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Chapter 1

Introduction

Since its conception in the 1940’s, John Louis von Neumann’s sequential stored program
computer model has become the predominant paradigm in computer design. Whether it is
the ARM7TDMI spinning digital music files in today’s portable digital music players or
the PowerPC 440 FP2 crunching astronomic amounts of data in IBM’s BlueGene/L super-
computer, the principles of operation are largely the same. Given the appropriate software,
the classic Von Neumann design can be deployed on any type of computational problem.

As any person with hands-on Swiss army knife experience can attest, the most flexible
tool doesn’t necessarily make for the most effective one. Despite its proven agility, all
except the most purist of survivalists would prefer a dedicated can opener over the pocket
utensil when challenged with a hermetic tin of beans. In computing, the situation is not
much different. While stored program computers can easily be adapted to perform a va-
riety of tasks, their design is inevitably suboptimal for any specific problem. It is for this
reason that the idea ofcustom computing devicesshould appeal to the academically curious.

There are more urgent reasons to think about application specific computing devices than
curiosity, however. These reasons come in the form of both threat and opportunity. On
the one hand, steady evolution in the field of reprogrammable logic devices has delivered
the tools for the implementation of custom computing machines to our doorsteps. Inex-
pensive ‘reconfigurable fabrics’ have become a technical and commercial reality over the
past decade. On the other hand, we see conventional CPU design approaching its phys-
ical limits, leaving this new technology waiting to be exploited as an alternative for low
budget, high performance computing. With the reconfigurable hardware already in place,
all that remains to be desired are proper development tools that can make reconfigurable
fabrics accessible for routine application development. Fundamental to the development of
such tools is the resolution of one question: how does one transform an algorithm into a
hardware design?

1.1 Overview

This text is the end result of an exploratory journey into the field of reconfigurable comput-
ing. Over a period of several months, the author immersed himself in the body of literature
surrounding this subject. The aim of this report is to give an account of that educational
experience, without the pretense of achieving complete coverage of the subject matter. It is
the author’s hope, however, that the reader will gain an appreciation of the challenges that
lie at the heart of this interesting topic.

This report is structured as follows. Section 2 contains an in-depth look at hardware or-
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ganization in reconfigurable systems. Section 3 reviews the proposed solutions to the most
prominent challenge in reconfigurable computing today: the design of convenient pro-
gramming languages and efficient compilers for reconfigurable platforms. Section 4 aims
to capture some of the early signs of convergence in this area, in the form of a series of
design strategies for synthesis tools. Section 5 concludes this work with a summary of the
findings, and a research proposal for an MSc. thesis project. These main themes will be
preceded by a short historical background (section 1.3), and the presentation of an elemen-
tary framework for systems evaluation (section 1.4) in the remainder of this introductory
section.

1.2 Related work

Reconfigurable computing systems have seen a fair amount of research activity in the last
decade. A number of surveys have appeared, which discuss hardware organization and
synthesis tool design in a manner similar to this work. Compton and Hauck [19] have
made a taxonomy of the hardware organization and synthesis tool designs of RC systems.
In contrast to this work, which considers a variety of hardware platforms, the scope of their
study was limited to FPGA based systems. Hartenstein [28] has compiled short technical
summaries of twenty reconfigurable hard- and software platforms. The accent of his work
is on the enumeration of existing systems, rather than the identification of common proper-
ties of the designs and/or the fundamental difficulties of reconfigurable computing. Sima et
al [41] have taken a formal approach to systems classification, which is more exact, yet less
intuitive than ours. Mangione-Smith et al [36] have written an excellent shorter introduc-
tory survey about reconfigurable computing, which deliberately lacks the practical details
and difficulties that are at the center of our discussion.

1.3 Background and motivation

The topic of reconfigurable computing is no exception to the rule that new ideas and tech-
nologies tend to build upon existing ones. When studying this exciting new field, it is
easy to lose oneself in the myriad of details and valuable insights from related topics, such
as compiler construction, language design, parallel algorithms, computation theory and
semiconductor engineering. At these levels of detail, our goals and the possible means of
achieving them are easily confused. To maintain a proper perspective, it is instructive to
place this technology in light of the greater goals that drive the disciplines of computer sci-
ence and engineering. In addition to establishing a good starting point, this will identify the
major design parameters that govern the development of reconfigurable computing systems.

In the remainder of this section, the historical goals and concepts of theoretical computer
science and computer engineering will be reviewed. This brief historical overview will
establish the motivation and goals of reconfigurable computing as an alternative to conven-
tional architectures.

Problems

Computer science is the study of systematic solutions to well formulated problems. The
fundamental question of what constitutes a problem in this context is not trivially an-
swered1, but for our purposes we will equateproblemsto binary relations over sets. The
elements of the domain of such a relation are theinstancesof the problem. The elements
of the codomain that are paired to an instance by the relation are called itssolutions. The

1At best, we encounter intuitive definitions in the literature [37]. Some classic texts simply avoid a definition
altogether [33, 40].
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anatomy of a problem in computer science is illustrated in Figure 1.1.

Domain

Codomain

Solution 2

Solution 3

Solution 1

Instance

Figure 1.1: A problem in computer science.

To demonstrate the applicability of this definition, consider the classic Travelling Salesman
Problem:

Example 1.3.1 (Traveling Salesman Problem (TSP)).The objective ofTSP is to find
Hamiltonian cyclesin graphs. Paraphrased slightly, the problem is to evaluate the binary
relation that pairs each graph to all —if any— of its Hamiltonian cycles. The domain of
TSPis the set of all graphs. Since Hamilton cycles are themselves graphs, this is also the
codomain of the relation. Any particular simple graph is aninstanceof TSP. If G is such
an instance, any graph that is a Hamilton cycle inG is asolutionof G for TSP.

Algorithms

Intuitively, our reasons for equating problems to binary relations become clear when we
try to find a solution to a particular problem instance. It is one thing to write down the
definition ofTSP, but to find an actual Hamilton cycle in an actual graph is quite another.
Computer science is largely concerned with the development of efficient procedures that
can find solutions to problem instances within finite time and with absolute certainty. Infor-
mally, these procedures are what we refer to when we speak ofalgorithms. While a formal
definition of the concept ‘algorithm’ is nearly as evasive as that of the concept ‘problem’,
we know of several widely accepted models of computation that can be used for this pur-
pose. For the sake of this discussion, we will adopt the formalism ofpartial recursive
functions[37]. We thus define analgorithmfor a problemP as apartial recursive function
f which exhibits the following properties:

• f ⊆ P .

• f(x) is defined for allx where there exists at least oney such that(x, y) ∈ P .

If f is an algorithm forP thenf is said tosolveP . It follows from our definition that
different algorithms forP may yield different solutions for particular instances. We know
from complexity theory that different algorithms forP may differ in terms of runtime
efficiency. Additionally, an algorithm may or may not be suitable for (partial) parallel
execution. Last but not least, we know from computability theory that there areP for
which no algorithms exist. For an introduction to partial recursive functions, computability
theory and complexity analysis, we refer to [37].

If we consider the set of all problems and the set of all partial recursive functions, the
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Problems

TSP

Closest pair alg.

Elastic net alg.

Sorting

Collatz

Partial recursive functions

Figure 1.2: TheALGproblem.

binary relationALG that pairs each problem to the partial recursive functions which are
its algorithms is itself a problem (see Figure 1.2). In fact, we would like to pose that
computer science is the discipline of finding and studying solutions to the instances of
the ALG problem. Since theALG problem is not algorithmically solvable, we need to
resort to less deterministic techniques in order to tackle it.ALG is thus adesign problem.
While it is not the central subject of our investigations, theALG problem is relevant to
us, as its solutions define the domain of another important problem. That problem, which
is discussed in the next paragraph, provides the essential motivation for our interest in
reconfigurable computing architectures.

Implementations

When faced with an instance of a problem, an algorithm is of course only half of the tool
that is needed to systematically find solutions. We also require a physical artifact which
canperformthe algorithm. To be more precise, we require an artifact that is capable of pre-
serving the input/output relation of the algorithm, in addition to its theoretical performance
characteristics. We call such an artifact animplementationof the algorithm. Implementa-
tions can take diverse physical forms. As an example, we consider an arbitrary algorithm
f which solvesTSP. A stored program computer which is preloaded with an appropriate
sequence of instructions could be considered an implementation off . Alternatively, a prop-
erly trained mathematician behind a desk, or a trained monkey for that matter, could also
be considered an implementation off . Neither implementation would be more efficient in
terms of time complexity, but under normal circumstances the computer would likely have
a much shorter turnaround time, due to the number of algorithmic steps it can perform per
unit of time.

The relation between algorithms and their implementations is of course a problem, as per
our earlier definition of the word. This problem, which we will call theIMPL problem for
the sake of reference, is depicted in Figure 1.3. It drives the discipline of computer engi-
neering, just as theALG problem drives the discipline of computer science. As theorists
strive to find the most efficient algorithms for computing problems, engineers do their part
by seeking to create the fastest implementations of algorithms2. Like theALG problem,
IMPL is a design problem, as we have no repeatable procedures for creating the best possi-
ble physical implementation of a given algorithm.

Together, the disciplines of computer science and computer engineering attack the com-

2In reality, the perimeter between the two disciplines is less clear. The design and implementation of program-
ming languages and their compilers, for example, is the traditional domain of computer scientists.
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Figure 1.3: TheIMPL problem.

bined problem of finding problem-solving automata which exhibit the shortest possible
turnaround times for a given problem. In the next paragraph, we will consider some of
the practical limitations that inhibit the development of optimal problem-solving automata.
Reconfigurable computing systems will be addressed later on as opportunities for relaxing
some of these limitations.

Adaptable computing systems

The synthesis of physical computing artifacts is a resource intensive process. For this rea-
son, computer engineering has naturally gravitated towards systems which are adaptable
to new tasks. The most successful attempts at such adaptable systems have been based on
the sequential stored program computer model, as proposed by Von Neumann. The stored
program computer offers a small virtual design space in which engineers have the freedom
to create ‘soft’ implementations of algorithms with relative ease.

While the Von Neumann architecture can be adapted to perform any algorithm, it exposes
its reconfigurability in a rather primitive manner. In order to implement an algorithm using
such an architecture, i.e. to solve theIMPL problem, engineers need to express the algo-
rithms in terms of the rather small set of problems which the hardware can actually solve
efficiently, i.e. those corresponding to the instructions in its instruction set. The penalties
of this intellectual detour, both on implementation time and on performance of the resulting
systems, can be quite dramatic.

While it has remained the de facto standard in computing, the downsides of the Von Neu-
mann architecture have long been acknowledged. Gerald Estrin and John Pasta first ad-
dressed the performance problems of the architecture in 1959. They started the first re-
search program into reconfigurable computing architectures at the University of California
at Los Angeles (UCLA) one year later. The direct incentive for their effort was the grow-
ing concern about computational problems which could not be solved efficiently using Von
Neumann computers on the one hand, and the industry’s failure to produce radical alterna-
tives on the other [21]. John Backus was probably the first to address the detrimental effects
of the Von Neumann architecture on our reasoning about programs, in his now classic 1977
Turing Award lecture [8]. In his own words:

Not only is [the system bus] a literal bottleneck for the data traffic of a prob-
lem, but, more importantly, it is an intellectual bottleneck that has kept us tied
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to word-at-a-time thinking instead of encouraging us to think in terms of the
larger conceptual units of the task at hand.

Despite the wide support for his position at the time, and despite the development of el-
egant declarative programming paradigms since, word-at-a-time programming has hardly
been dismissed from our engineering practices. An important reason for its persistence is
the fact that, underneath it all, our computing hardware is still instruction based. While
declarative languages may provide much better formalisms for reasoning about algorithms,
imperative programming languages tend to map better onto sequential logic. With the re-
cent arrival of cheap, reconfigurable VLSI technology —hardware which is not inherently
instruction-based— word-at-a-time programming at least deserves another round of thor-
ough questioning.

1.4 Assessing reconfigurable computing platforms

In the foregoing, we briefly restated the goals of computer science and computer engineer-
ing at large. We pointed out the fundamental barriers that prevent engineers from further
approaching these goals through established means and we hinted at the possibility of at-
tacking these barriers by means of newly emergent, reconfigurable hardware. We will now
define of the conceptreconfigurable computing systemand state the design criteria for such
systems.

Definition 1.4.1 (Reconfigurable computing system).For the remainder of this text, we
definereconfigurable computing systems, in the narrow sense, as computing systems that
allow explicit rerouting of low level hardware signals. In a broader sense, we definerecon-
figurable computing systemsas those macroscopic computing devices which are at least
partly comprised of such reconfigurable hardware. We consider the tools and program-
ming languages that allow for the development of applications for such architectures as
part of the system in this broader definition.

Design objectives

In our review in Section 1.3, we established that the idealized goal of computer engineer-
ing is to create physical implementations of algorithms which exhibit minimal effective
turnaround time behaviour. Reconfigurable computing systems are, above all else, tools
that should enhance the effectiveness of engineers at attaining this goal. In order to be use-
ful as such, we feel that RC systems should aim to satisfy the following idealized design
criteria:

Design criterion 1 (Admittance). A reconfigurable computing system shouldadmiteffi-
cient hardware utilization for arbitrary algorithms.

In essence, any prefabricated computing platform imposes constraints on the options of
engineers. The admittance criterion states that reconfigurable computing systems should
minimize these constraints, in order to allow the user to create customized, efficient designs
for arbitrary algorithms.

Design criterion 2 (Accessibility). A reconfigurable computing system, in the broad sense
of definition 1.4.1, should provide anaccessibledevelopment platform.

Whereas the admittance criterion only states that it should be possible to create efficient im-
plementations of algorithms in theory, the accessibility criterion demands that there should
also be practical means of developing such implementations, i.e. at the expense of reason-
able amounts of intellectual effort, time and money.
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Design criterion 3 (Transparency). A development platform for reconfigurable comput-
ing applications should betransparentto the developer.

In order to improve accessibility, developers generally rely upon tools that allow for algo-
rithms to be expressed in abstract formalisms, rather than low-level detail. The transparency
criterion demands that these tools should not introduce performance surprises, i.e. that the
developer should be able to make reasonable estimations of the runtime behavior of their
program during the development phase.
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Chapter 2

Reconfigurable architectures

In the first of the three complementary views on reconfigurable computing presented in
this work, we will focus exclusively on the hardware organization of RC platforms. Under
the assumption that the reader is already familiar with traditional hardware organization,
i.e. the Von Neumann architecture, we will limit ourselves to a treatment of what are, in
our opinion, the key aspects of hardware organization in RC systems. In Section 2.1, we
present these key aspects and provide a short explanation. In Section 2.2, we will examine
a number of actual hardware designs, in order to gain a feel for what these aspects mean in
a practical sense. Section 2.3 finishes this chapter with a conclusion of our findings.

2.1 System properties

Hardware platforms for reconfigurable computing systems come in various shapes and
sizes. On a broad scale, we can observe four distinctive properties which can be adopted as
a means of classification. In this section, we will present and discuss these characteristics
one by one.

2.1.1 Reconfigurability

The definition of RC systems in 1.4.1 allows for platforms which combine traditional fixed
components with reconfigurable computing fabrics. The balance between these two types
of logic circuits typifies a hardware platform. We will refer to this property as thereconfig-
urability of a system. Reconfigurability is a macroscopic system property.

Reconfigurability can be viewed as a continuous scale. On the extreme end of the scale
are systems which are fully adaptable, i.e. systems which are completely comprised of re-
configurable fabrics. On the other extreme end are non-reconfigurable architectures, such
as traditional Von Neumann computers. Somewhere in between these extremes are ‘fixed
plus variable’ systems, which combine fixed components, such as conventional sequen-
tial processors or finer grained components, with reconfigurable routing- or computational
fabrics.

2.1.2 Coupling

Given the distinction between fully and partially reconfigurable architectures, we can make
further distinctions amongst systems of the latter type, based on the nature of the commu-
nication facilities which exist between the reconfigurable fabric and the fixed core. We will
make a broad distinction between two types of systems. Onloosely coupledsystems, the
reconfigurable fabric executes computations with a certain degree of autonomy, i.e. as a
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small parallel task. Ontightly coupled systems, the reconfigurable fabric functions as an
integral component of the CPU, i.e. as a special extension to the ALU on which custom
instructions can be implemented.

2.1.3 Granularity

Up to this point, we have presented two characteristics which describe systems on a macro-
scopic level. The final pair of characteristics will deal with the microscopic level of RC
systems: the reconfigurable fabric. The first and arguably the foremost characteristic of
this fabric is itsgranularity. The concept of granularity deals with the ‘size’ of the logic
elements that can explicitly be reconfigured by the programmer. On the extremely fine-
grained end of the spectrum, we have fabrics that allow explicit reconfiguration of single
logic gates. Moving towards the coarser end of the spectrum, we encounter systems which
offer control over larger operational components, e.g. adders, multipliers, shift registers,
etc. RC fabrics can have homogeneous granularity, but hybrid fabrics are also common.

Granularity has a number of important implications. Foremost, it has an obvious bound-
ing effect on the admittance of the system as an application development platform. Fine-
grained fabrics allow for the implementation of detailed, problem specific designs, which
implies a higher potential for efficient hardware utilization. There is a flip side to this
coin however, as coarser grained components can be optimized for performance on a level
deeper than that of logic gates. Through clever design tricks, for example, coarse spe-
cialized components can be made which exhibit shorter propagation delays than logically
equivalent implementations with reconfigurable logic gates. For this reason, we see a trend
towards heterogeneous fabrics, which offer a mixture of reconfigurable gates and com-
monly used arithmetic- and routing components.

2.1.4 Reconfiguration time

The fourth and final systems characteristic is also related to the reconfigurable fabric on a
microscopic scale. Thereconfiguration timeis the amount of time that is required to load a
new circuit description into the fabric. In our definition of reconfiguration time, we exclude
any compilation- or preprocessing time, i.e. we are only interested in the time it takes to
physically change the hardware to a new configuration.

In relation to reconfiguration time, we make a broad distinction between two classes of
systems. On the one hand we have systems which arestatically reconfigurable. A stati-
cally reconfigurable fabric is a fabric that cannot change its configuration at runtime. Con-
versely,runtime reconfigurablefabrics can be loaded with new configurations during the
execution of a program. Runtime reconfigurability is a useful property, since it can help
to alleviate the problem of limited hardware resources. With the gained power, of course,
comes increased management complexity.

2.2 Architectures

In the foregoing, we introduced four aspects of hardware organization, uniquely pertaining
to reconfigurable computing architectures. We will now direct our attention to the study
of a number of actual hardware designs. The designs that are discussed in this section
represent a wide variety of different approaches to RC hardware design.

13



2.2.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGA) are reconfigurable VLSI components that allow
for the implementation of arbitrary sequential and combinatorial circuits. In its simplest
form, an FPGA consists of an array of configurable logic blocks (CLB), a fixed set of I/O
blocks and a flexible routing mesh. An FPGA ‘program’ consists of a functional specifi-
cation for each of the CLBs and a connectivity description for the routing mesh. FPGAs
are widely used in the capacity of application-specific integrated circuits (ASIC). Example
applications include realtime digital signal processing and data encryption.

Reconfigurability and coupling

An FPGA is a single VLSI component. In order to be suitable as a generic computing
platform, it needs to be mounted on a printed circuit board that provides I/O facilities. A
number of inexpensive FPGA development boards are currently available on the market,
which commonly provide a selection of IO connectors —ranging from PS2 ports, VGA
ports and serial (RS232) ports to Ethernet connectors and beyond— which are connected
directly to the IO blocks of the FPGA. While these boards are designed with development
for embedded applications in mind, they are suitable for use as simple reconfigurable com-
puting platforms. An FPGA mounted on such a board is a prime example of what we
consider to be afully reconfigurablearchitecture, i.e. any subsystem decomposition or in-
ternal structuring is completely up to the application developer. As an aside, we mention
that some vendors are currently offering partially reconfigurable systems which combine
fixed cores and FPGAs on a single die.

Granularity

The configurable logic blocks (CLB) on an FPGA are fine-grained components. A CLB
can typically be used to replace two to six simple logic gates or a single flip flop in a gate
level circuit design. In addition to these generic CLBs, most of the commercially available
FPGAs contain larger, coarse-grained blocks which provide commonly used functionality.
As an example, the members of the Xilinx Spartan-3 family of FPGAs offer 18-kilobit
synchronized RAM blocks, 18-bit multiplier blocks and a small number of specialized
clock management blocks in addition to their generic CLBs [46]. Other vendors offer
similar packages. FPGAs can thus be consideredfine-grained, heterogeneouscomputing
platforms, as per our discussion in 2.1.3.

Reconfiguration time

The reconfiguration times of FPGAs are model specific. Traditionally, FPGAs required a
complete reset from an external bit stream which took several seconds to perform, making
themstatically reconfigurableonly. At present, some FPGA models support limited run-
time reconfiguration, e.g. the Xilinx Virtex-4 family [47].

2.2.2 Garp

Garp [15] is the reconfigurable computing architecture from the University of California
at Berkeley. The Garp architecture consists of a fixed MIPS [4] core, augmented with a
reconfigurable array. The reconfigurable array was designed with the acceleration of loops
in general purpose programs in mind.

The anatomy of Garp’s reconfigurable array is similar to that of FPGAs, i.e. it is com-
prised of reconfigurable logic blocks and a flexible routing mesh. These logic blocks array
can perform logical and arithmetic operations on operands which are at most two bits in
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size. More complex operational components can be composed of these smaller units by
means of the routing mesh. The configuration of the reconfigurable array is controlled by
the program that runs on the sequential core. From the programmer’s point of view, the
array is available as a support utility, which can be deployed for demanding computations.

Reconfigurability

The Garp architecture is a fixed-plus-variable architecture. In the case of Garp, the mo-
tivation for this configuration stems from the observation that most sequential algorithms
spend the bulk of their time in relatively small pieces of looping code. Instead of apply-
ing complex custom computing approaches to complete programs, the Garp architecture
focuses on the acceleration of these loops by means of the reconfigurable array, and leaves
the mundane algorithmic tasks to the conventional sequential logic. The Garp architecture
is thus apartially reconfigurableplatform.

Coupling

The coupling of the Garp system is similar to that of a conventional sequential core with
an assisting coprocessor. The VLSI core, which contains the MIPS CPU, connects to the
reconfigurable array over high bandwidth connection with a moderately high latency, i.e.
while high volume data transmission is possible, the latency is too high to communicate
data on a per-instruction basis. Data is moved to and from the array using special move
instructions, which take an unspecified but small number of cycles to execute.The array
communicates its status to the core through an interrupt mechanism, allowing the core to
continue parallel execution during computations on the array.

Both the MIPS core and the reconfigurable array have direct access to the main mem-
ory subsystem. The MIPS core has a conventional instruction cache. The reconfigurable
array has a configuration cache, that allows the array to recall recently used configurations.

Granularity

The reconfigurable array of the Garp architecture is afine-grained, homogeneousreconfig-
urable fabric. As mentioned in the introduction, the configurable logic blocks of the fabric
can be used to implement operations with at most two bits of input. Similar to FPGAs,
the CLBs of the array can double as small latches or registers. Contrary to many current
FPGAs, the array contains no coarse-grained operational units.

Reconfiguration time

The Garp architecture was designed with the intent to optimize small loops in conventional
programs. In order for this approach to be feasible, reconfiguration times had to be kept
acceptably low. In order to achieve this, the reconfigurable array of the architecture has a
high bandwidth connection with main memory and a private configuration cache. The size
of the configuration cache is model-specific, but it is intended to hold at least several, e.g.
about four, complete configurations or many smaller ones. The array can be reconfigured
from the cache in approximately five clock cycles.

2.2.3 PipeRench

PipeRench [25] is Carnegie Mellon University’s answer to the reconfigurable computing
challenge. The system, which is particularly suitable for stream based media processing
applications, was designed with the benefit of hindsight on FPGA-based reconfigurable
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computing machines. Specifically, the PipeRench fabric aims to beat FPGA based ma-
chines on five counts, three of which are discussed here:

Forward compatibility Configuration bit streams for FPGAs are model-specific. There is
no portable binary format for FPGA core images, which necessitates recompilation
for models with different gate capacities. The PipeRench executable format was
designed to be forward compatible with larger and faster implementations of the
architecture.

Resource constraintsFPGA developers are often confronted with the limited gate capac-
ity of the hardware. The PipeRench system encompasses an innovative ‘hardware
virtualization’ technique, which is used to abstract away from the physical limitations
of the hardware, allowing transparent reuse of the available processing components.

Compilation time Compared to the compilation times of sequential programs, the build
times of FPGA-based applications are relatively long. The hardware virtualization
mechanism of PipeRench has the side effect of relaxing the difficulties of compila-
tion, because the compiler no longer has to optimize for efficient space usage.

The other two claimed improvements of PipeRench are improvements inconfiguration time
and logic granularity. For the sake of consistency with our treatment of other platforms,
we discuss these aspects in the appropriate sections below.

Reconfigurability

Technically, the PipeRench design is a pure reconfigurable fabric. It is thus in itself a fully
adaptable system. Unlike FPGAs however, the PipeRench fabric is not suitable for com-
plete system on chip implementations. The designers of the system envisioned PipeRench
as a coprocessor, i.e. it requires an additional computing system in order to be used as a
full computing platform. A complete PipeRench-enhanced computing system should thus
be classified as apartially reconfigurablesystem.

Coupling

As mentioned, PipeRench was designed to function as an attached coprocessor in a general
purpose computing system. The coprocessor is intended to be used as aloosely coupled
system, which processes longer instruction sequences with relative autonomy.

Granularity

One of the key design points of the PipeRench fabric is its radically different approach
to granularity compared to FPGAs. According to its designers, a key improvement of
PipeRench over FPGAs is that its configurable logic units are designed for computation
purposes, whereas FPGAs are designed for the more difficult task of random logic replace-
ment. The PipeRench fabric is thus an example of a relatively coarse-grained fabric.

We will now look into the fabric of PipeRench in some detail. The PipeRench chip is
comprised of so calledstripeswhich represent pipeline stages in a computation. One stripe
contains a number of configurable processing elements, which need to be thought of as
ALUs in terms of granularity. All processing elements inside a physical stripe need to be
configured simultaneously, i.e. in the designer’s terminology: the elements in a stripe main-
tain their static function while a virtual stripe resides in a physical stripe.

Subsequent stripes in the PipeRench fabric are connected by an interconnection network.
The processing elements from a stripe can access the computed values of any processing
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element in the preceding stripe, or registered and unregistered values from elements in the
same stripe, through this network. Finally, each processing element contains a set of pass
registers which can be read by the subsequent stripe. If the processing element doesn’t
provide a value for a pass register, the value is copied from the preceding process element’s
corresponding register.

Reconfiguration time

A powerful feature of the PipeRench fabric is its extremely short configuration time. A
physical stripe on the fabric can be reconfigured in a single clock cycle. Its short recon-
figuration time enables the PipeRench architecture to simulate long virtual pipelines on
hardware with fewer physical stripes with minimal overhead.

2.2.4 Raw

The Reconfigurable Architecture Workstation (“Raw”) microprocessor is an experimental
reconfigurable fabric from Massachusetts Institute of Technology [44], which was designed
for general purpose computing. The Raw system was built on the observation that on-chip
wire delays are becoming the limiting factor in modern CPU designs, to an extent where
they can and should no longer be abstracted away from the developer. The proposed solu-
tion is an architecture which explicitly exposes wire delays to the programmer.

The Raw processor consists of 16 identical programmable tiles on a single silicon die.
Each of these tiles contains a single-issue MIPS core, a floating point unit, a data cache
and a software managed instruction cache. The size of the tiles is chosen such that a logic
signal can propagate an entire tile within one clock cycle.

The reconfigurable nature of the Raw architecture exposes itself through the routing mesh
that connects the tiles, which is explicitly programmable. To the developer, communication
between two adjacent tiles is visible as a network hop. The programmer has explicit control
over the organization of the computation, in order to minimize the total amount of hops.
The Raw architecture can thus be viewed as a symmetric multiprocessor on a single chip,
with a partially reconfigurable communication grid.

Reconfigurability

In concept, the Raw architecture is more similar to a conventional multiprocessing cluster
than it is to a reconfigurable computer. Contrary to other systems, the reconfigurable sub-
system of the Raw architecture is a communications subsystem only, i.e. it does not serve
computation explicitly. Given the granularity of the tiles, it is reasonable to classify Raw as
a partially reconfigurable system, with the connotation that it approaches the limits of what
can still be called a reconfigurable computer.

Coupling

In relation to other partially reconfigurable systems, we have looked at coupling in terms
of the communication facilities between fixed and variable subsystems. On the Raw archi-
tecture, this view becomes distorted, as the communication facilitiesare the reconfigurable
subsystem.

The reconfigurable network of the Raw architecture consists of a combination of four
separate networks. In each of these networks, a tile connects to its four immediate neigh-
bors through 32-bit, full duplex connections. Two of these four networks have to be con-
figured by the application programmer at compile time. The remaining two networks can
be reconfigured at runtime.
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Granularity

The Raw architecture separates itself from its peers by taking a completely different ap-
proach to reconfigurability. In other systems, signals can be routed between relatively low-
level operational blocks. The Raw architecture offers no such blocks, or rather, the blocks
are so extremely coarse-grained that they are in fact completely autonomous sequential
processors.

Reconfiguration time

As mentioned under the coupling heading, the reconfigurable network of the Raw architec-
ture has variable reconfiguration time characteristics. Two of the four communication grids
cannot be reconfigured at runtime, whereas the other two can. The exact number of cycles
necessary for rerouting is not specified. Given the strong focus of the system towards single
cycle operations, it would be likely that the routing can be reconfigured in a single MIPS
instruction, i.e. one cycle.

2.2.5 Chimaera

The Chimaera Reconfigurable Functional Unit [29] is a general purpose reconfigurable
computing architecture. Contrary to the other systems reviewed here, Chimaera combines
a classic fixed architecture with a reconfigurable fabric on a single die. According to its
designers, multiple die approaches suffer from a communication bottleneck between the
fixed- and variable logic components, necessitating the transport of larger units of code to
the reconfigurable fabric to maintain computational efficiency.

Reconfigurability

Chimaera is a fixed-plus-variable architecture. The design specifies a small reconfigurable
array, which attaches to a conventional sequential host processor.

Coupling

The Chimaera design is an example of a tightly coupled system. The RFU communicates
with the sequential logic on a per-instruction basis. From a programmer’s perspective, RFU
operations should be viewed as special instructions, rather than separate miniature tasks, as
was the case with the Garp- and PipeRench designs.

At the heart of Chimaera’s communication infrastructure lies the shadow register file. It
is a collection of registers which mirror the content of a subset of the host processor’s
registers. The shadow registers connect directly to the reconfigurable array. They serve
as inputs for RFU-based computations only. The output of an RFU operation is written
directly to a single host register.

Granularity

Chimaera’s reconfigurable array is ahomogeneous, fine-grainedreconfigurable fabric. Its
design was inspired by that of the Triptych [13]- and Altera FLEX 8000 [5] FPGA fabrics.

Reconfiguration time

The Chimaera system can be reconfigured at runtime. In addition to the mentioned shadow
register file and the reconfigurable array, the RFU contains a configuration cache- and
prefetch unit, which is used to compensate for costly RFU misses. The reconfigurable
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array can contain an unspecified number of RFU operations simultaneously, depending on
its capacity.

2.2.6 Other architectures

In this section, we have looked at a small subset of the architectures that are currently
being proposed. While these architectures have been chosen to reflect some of the bigger
trends in RC hardware design, there are many interesting variations on these themes, which
are equally worthy of investigation. Rather than citing an arbitrarily long list of names,
we advise the interested reader to consult the concise list of reconfigurable architectures
maintained by Rami Abielmona [2], and the list of FPGA-based computing machines [3],
maintained by Dr. S. Guccione of Xilinx, Inc.

2.3 Conclusion

In this chapter we presented four system properties that can be used to classify reconfig-
urable computing architectures. In a series of case studies, we applied this simple model to
a number of actual architectures. A summary of our findings is given in Table 2.3, and in
the discussion that follows.

Platform Reconfigurability Coupling Granularity Reconfiguration time
FPGA Full N/A Fine/Heterogeneous Model specific
Garp Partial Loose Fine Runtime
PipeRench Partial Loose Moderately coarse Runtime
Raw Routing only Tight Coarse Partially runtime
Chimaera Partial Tight Fine Runtime

Table 2.1: Hardware platform summary

Reconfigurability

We have considered systems with varying levels of reconfigurability. Advancing on our dis-
cussion on the difficulties of code generation for reconfigurable architectures, we conclude
that a partially reconfigurable setup, where the fixed logic handles mundane computational
tasks while the reconfigurable fabric is used for the implementation of demanding ‘micro
algorithms’, holds a great advantage over fully reconfigurable systems in terms of devel-
oper accessibility.

Coupling

We have considered ‘fixed plus variable’ architectures with different degrees of coupling
between the sequential logic and the reconfigurable fabric. We have seen that tightly cou-
pled systems, i.e. systems where communication between subsystems occurs on a per-
instruction basis, are easier to program than loosely coupled systems, where the reconfig-
urable fabric executes its tasks with a certain degree of autonomy. We have also seen that
tight coupling inhibits the exploitation of parallelism on the reconfigurable fabric, due to
the fact that the fabric is forced to run in lock step with the fixed sequential logic.

Granularity

We have considered reconfigurable architectures of different granularities. Amongst these,
FPGAs represent the finer end of the spectrum, whereas the Raw architecture is a repre-
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sentative of a more coarse grained approach. Fine grained approaches have the advantage
of allowing more detailed control, and thus a more efficient utilization of resources than
coarser grained systems. A disadvantage of such systems is that complex operational cir-
cuits (numeric adders, multipliers, etc.) tend to exhibit longer propagation delays when
implemented in fine grained hardware. Heterogeneous systems, e.g. systems that offer
both fine grained logic and a selection of larger components offer a satisfactory compro-
mise. The extremely coarse grained approach of the Raw architecture, where each logic
block is a complete sequential core, offers few advantages over conventional parallel sys-
tems.

Reconfiguration time

We have considered both statically and dynamically (runtime) reconfigurable fabrics in this
chapter. We have seen that dynamic reconfigurability is not only a desirable property, but
that it is the only effective way of dealing with larger programs on hardware of limited
capacity.
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Chapter 3

Synthesis tools

Reconfigurable computing platforms offer an unprecedented amount of freedom to the pro-
grammer in comparison to Von Neumann machines. While this freedom brings opportunity,
it also demands greater care and effort during development. It is the function of thesyn-
thesis toolto offer abstraction from the low level details of the hardware, in order to make
the implementation of algorithms a tractable problem for the human programmer. Relying
on the synthesis tool to offer abstraction from the complexity of the underlying platform
does not, however, solve the problem of exploiting the added flexibility. It merely shifts the
burden from the application developer to the synthesis tool designer.

In this chapter, we will look at the unique difficulties of developing compiler technology
for reconfigurable targets. In Section 3.1, we discuss the problem with an emphasis on
programming languages and paradigms, i.e. the we discuss synthesis tools from the ‘user’
perspective. In Section 3.2, we take a target oriented look and discuss the models of com-
putation that synthesis tools use as intermediate targets. In Section 3.3, we will evaluate
the practical implications of language design and computation models by looking at details
of some existing synthesis tool designs.

3.1 Language considerations

A synthesis tool should help developers to transform their thoughts about algorithms into
efficient implementations. The first task of the tool is thus to capture the thoughts of the
developer in an accurate way. The source language is the vehicle for this influx of infor-
mation. If anything, it should be expressive and powerful enough to allow the developer to
express their thoughts about algorithms in a straightforward manner.

Source language design is, however, not completely user-centric. On the other end of
the synthesis tool, we find the reconfigurable target architecture, with its structural seman-
tics. At some point during the synthesis process, behavior will have to be mapped onto
structure. This task —the bridging of the ‘semantic gap’— is a monumental task; one that
may prove to be too heavy for application developers or synthesis tool designers to bear
on their own. Conventional wisdom then suggests that the burden may be spread over both
parties. This desire for intellectual load balancing counteracts the wish for a fully abstract,
developer friendly source language. In the design of a source language for a synthesis tool,
the constraints of the underlying hardware should thus be taken into consideration.

Apart from the usual cosmetic issues, source language design revolves around two central
issues: the declarative vs. imperative programming debate and the tradeoff between struc-
tural and behavioral modeling. The former of these is a known issue from conventional
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compiler technology, but one that may have a different outcome with respect to reconfig-
urable architectures. The latter is a tradeoff that is unique to reconfigurable computing. We
will now discuss them both in some detail.

3.1.1 Structural vs. behavioral modeling

At the lowest level, reconfigurable computing architectures distinguish themselves from
their sequential counterparts through exposure of their internal structure. Effectively, this
means that the programmer is expected to describe the signal interconnections between the
available logic components. Low level reconfigurable programming thus deals with struc-
tural organization of logic elements, rather than the functional description of algorithms.
Reconfigurable platforms can be programmed directly at this level, using a rudimentary
language in which structure can be expressed. In this scenario, the burden of crossing the
semantic gap is completely on the application developer. We refer to this style of modeling
asstructural modeling.

One of the desirable properties of a synthesis tool is that it can abstract away from the
structural nature of reconfigurable computing. If so desired, we could develop languages
in which the programmer exclusively deals with functional, or even imperative1 descrip-
tions. This style of programming, which is similar to that of conventional programming
languages, is referred to asbehavioral modeling. A purely behavioral modeling language
requires an intelligent tool, which is capable of negotiating the semantic gap automatically.

As we have mentioned earlier, application development and synthesis tool design are both
complex tasks with conflicting interests. This dissonance is without doubt the single most
important problem in reconfigurable computing today. With little overstatement, the holy
grail of reconfigurable computing is to create a synthesis tool which combines a fully be-
havioral source language with code generation capabilities that match or surpass hand-
crafted structural designs in quality. As is typical of holy grails, such a tool has remained
conspicuously elusive.

3.1.2 Declarative vs. impertative programming

As synthesis technology attempts to move toward the ideal of behavioral modeling, the
decade-old question ‘which behavioral programming paradigm is best?’ towers at the hori-
zon. At the risk of reiterating one of the most heated debates in computer science, we will
argue here that there are substantial arguments to reevaluate the results of this discussion
in light of reconfigurable computing systems.

To put our discussion into perspective, we recall that the wordparadigm, in general, de-
notes a set ofbeliefsor assumptions about the world which is shared by a group of peo-
ple. In programming, for example, the Object Oriented paradigm (OO) encompasses the
belief that all properly structured programs are internally composed out of autonomous
units which communicate with each other through implementation-independent interfaces.
When a programmer shares this belief with the compiler designer2, the source language
may reflect this common assumption by offering specialized support for object creation
and inter-object communication. A paradigm in computer programming is thus a set of as-
sumptions about the nature of programming, which are accepted as truths by the language
designer and the programmer alike.

As is customary with belief systems, some paradigms in programming are based on mu-
tually conflicting assumptions. The canonical example of such a near-religious dispute in

1Note, for example, the sequential programming model provided in the VHDL ‘process’ environment.
2Apparently, not all programmers do.
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computing is the ‘declarative vs. imperative’ debate, which has kept academics and en-
gineers quarreling for nearly half a century. The declarative paradigm assumes that the
programmer’s position is to tell the computer ‘what’ it is that is to be computed, inde-
pendent of the ‘how’ of the computation. The imperative paradigm assumes almost the
opposite: the imperative programmer conveys the ‘how’, leaving the ‘what’ fully implied.
In imperative programming, the position of the programmer is to reduce the computational
task to a series of trivial steps. In declarative programming, the objective is to reduce the
problem to a series of elementary declarative statements that can be resolved by the runtime
environment or the compiler.

To an extent, a stalemate has been reached in the declarative vs. imperative debate, leaving
the conclusion that declarative programs are generally shorter to write and less prone to
errors, whilst imperative programs are considerably easier to compile into efficient code
for Von Neumann target architectures. The latter argument, then, is the exact reason why
we should be wary of imperative languages with respect to reconfigurable architectures: on
non-sequential hardware, the main argument for their justification simply doesn’t apply.

3.2 Models of computation

In Section 2, we painted the field of reconfigurable hardware platforms as a wide and varied
landscape, which up to this point has displayed few signs of convergence. With this image
freshly in mind, it is evident that a generalized description of theoutputof synthesis tools
is hardly attainable. Matters are complicated further by the fact that synthesis tools are typ-
ically located at the top of a larger tool stack, in which each subsequent layer represents a
virtual target platform in itself; each with its own distinct semantics. In order to understand
the transition from behavioral- to structural description, it is nonetheless important to have
an general impression of what it is that synthesis tools produce as output.

With the connotation that a complete coverage is beyond the scope of this text, we will
take an alternative approach to describing what it is that synthesis tools generate. We will
present a number of abstract models of computation, which share the property that they can
easily be translated into a hardware specific structural description. This approach will al-
low us to focus on the transition of the semantic gap, whilst avoiding any platform specific
details.

We will consider the following models of computation:

• Thegate level description.

• Thedata-flow network.

• Communicating sequential processes(CSP).

• Thecustom instruction set architecture.

These models provide a good general idea of what the output of many actual synthesis tools
looks like.

3.2.1 Gate level description

In its idealized form, a reconfigurable computing platform allows for explicit reprogram-
ming of individual logic gates and their interconnections, without resource constraints and
performance penalties. The first of our four target architecture models is a direct reflection
of this idealized flexibility: thegate level description. A gate level description synthesizer
translates its source program into a directed, single edged graph, which directly describes
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elementary logic gates, IO ports, and their interconnections, which collectively implement
the desired functionality. In a gate level description, clock signals are explicitly visible, in
the form of ordinary component input signals. Similarly, any latching functionality has to
be synthesized explicitly.

The gate level description is a model of computation that can be mapped onto fine-grained
reconfigurable hardware with relative ease. It should be noted, however, that a series of
non-trivial transformations remain before a hardware configuration bit stream can be gen-
erated from such a description3. The gate level description is a commonly used stepping
stone in synthesis tool stacks for FPGA and CPLD targets.

3.2.2 Data flow network

In our discussion of hardware architectures, we have seen a distinction between fine-
grained and coarse-grained approaches. We expect to see similar distinctions in abstract
synthesis targets. Thedata flow network, then, can be viewed as a coarse-grained variation
on the gate level description. Data flow networks are directed acyclic graphs of coarse-
grained operational components (e.g. adders, multipliers, etc.), which operate in lock step
according to a global clock. Latching is implicit at each step, as the connections between
successive operators are expected to be registered.

The choice of the data flow network as a model of computation has a number of pros
and cons as compared to the finer grained gate level description. On the upside, this ap-
proach simplifies synthesis considerably, due both to the fact that the number of vertices
in a data flow graph is an order of magnitude smaller than that of a functionally equivalent
gate level description, and the fact that no bit-level synthesis has to be performed4. The
inevitable downside is that no bit level synthesiscan be performed either, thus inhibiting
effective bit-level parallelism. Another drawback is the fact that data flow networks have
difficulty with maintaining state over longer periods of time, as data is forced through the
acyclic graph at each step.

The data flow network is a natural target for synthesis on coarse-grained RC platforms.
Aside from its native habitat, the model can be used as an intermediate step in tool stacks
for finer grained platforms. This latter approach is especially potent in combination with
the augmented instruction set architecture approach, as discussed in Section 3.2.4.

3.2.3 Communicating sequential processes (CSP)

Gate level descriptions and data flow graphs are both examples of low level target architec-
ture abstractions. In these models, the atomic units of the underlying hardware are exposed
to the synthesis tool directly. By contrast, thecommunicating sequential processesmodel
signifies a mid-level approach. In this model, which is loosely based on Hoare’s formal-
ism [30], the synthesis tool maps the input program onto a set of sequential processes,
which are intended to operate concurrently. Communication between these processes oc-
curs either synchronously or asynchronously through specified data connections.

The CSP model of computation is somewhat higher in level than the models we have dis-
cussed so far. In general, it will be necessary to have an additional strategy to transform
the processes into actual structural designs. Depending on the complexity of the processes,
one of two approaches can be taken:

3These transformations, which may include gate-to-CLB mappings and ‘place-and-route’ stages, are hardware
specific. Some of them will be discussed during the subsequent case studies.

4ALU configurations can be defined statically.
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Concurrent state machinesGiven the finite memory resources, sequential processes in
CSP are effectively state machines. If the number of states in a process is small, e.g.
in the order of tens, a generic state machine template can be used for code generation.

Hybrid modeling If the complexity of the processes does not facilitate a direct mapping
onto simple state machines, i.e. when the number of possible states of a process
becomes too high, due for example to the presence of data structures internal to the
process, an additional model of computation can be used to describe the sequential
task.

The CSP approach trades some of the expressive power of low level models for a simplifi-
cation of the synthesis problem.

3.2.4 Custom instruction set architecture

The final model of computation discussed here has its roots firmly in traditional Von Neu-
mann computing. Thecustom instruction set architecturemodel of computation is for the
better part identical to that of the Von Neumann approach: the input program is transformed
to a logically equivalent sequence of primitive operations. These operations form thein-
struction set architectureof the target. In reconfigurable computing, the compiler has a say
in the design of this architecture, i.e. it can synthesize a custom instruction set in addition
to the instruction sequence itself.

The custom instruction set architecture model assumes implicitly that bit-level parallelism
is where reconfigurable computing will shine, as other forms of parallelism are effectively
ignored. The best fit for this model are the hardware platforms which combine sequential
logic with a closely coupled, i.e. low latency/high bandwidth connected, reconfigurable
fabric. On platforms that allow greater flexibility, the assumption that all interesting oppor-
tunity for parallelism is exhibited at the bit-level is, at best, naive.

3.3 Synthesis tools

After the theoretical treatment of Sections 3.1 and 3.2, we will now examine synthesis
tools from a more practical perspective. In this section, we will look at a selection of actual
synthesis tool designs. Given our angle, we will not be interested in the finest of details.
Rather, we will aim for general impressions that will allow us to gain an understanding of
how language designs and models of computation affect synthesis tool design in practice.

3.3.1 XST

XST (Xilinx Synthesis Technology) is the entry-level, proprietary synthesis tool from Xil-
inx, Inc., a large manufacturer and developer of FPGA products. XST occupies the top
layer in a stack of tools, the Integrated Synthesis Environment (ISE), which collectively
transform developer input into a model-specific FPGA configuration bit stream. While our
main focus is on the top level synthesis tool, we will discuss the subsequent layers of the
ISE stack in some detail, in order to gain a holistic understanding of the synthesis process.

Source language

FPGA designs are commonly developed in so-calledhardware definition languages(HDL).
The HDL world is dominated by two languages: VHDL and Verilog. XST supports both.
In this discussion, our focus will be on VHDL.
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The VHSIC5 Hardware Description Language —VHDL for short— grew out of the desire
for a standardized description format for large scale digital systems, in the late 1970’s. The
development of VHDL, which was largely carried out by the U.S. Department of Defense,
culminated in the adoption of an IEEE standard (IEEE 1076) in 1987, and subsequent re-
visions in 1993 and 2001. At its inception, synthesis of logic designs was not part of the
task description of the language, i.e. it was used primarily for simulation and verification
purposes. These roots are still visible in modern VHDL-based synthesis tools like XST, in
the sense that not all valid VHDL code is synthesizable into hardware. Application devel-
opers are thus generally confined to a relatively small synthesizable subset of the language,
which, unfortunately, is not standardized across different synthesis tools.

As a hardware description language, VHDL does little to hide the structural semantics of
the underlying platform. A VHDL ‘program’ consists of an explicit external description of
a single physical component, which represents the top level of the application. The input-
and output signal ‘pins’ of this top level component may be connected to the physical IO
facilities of the FPGA through a simple name resolution mechanism.

Once a component is defined from the outside (using an ‘entity’ construct), its inner work-
ings are to be specified in the body of an accompanying ‘architecture’ block. The architec-
ture block allows for a mixture of structural and behavioral statements. As an example of
the former, smaller components can be instantiated and composed inside the architecture
body to produce the larger component’s functionality. Theoretically, algorithms can be ex-
pressed completely in structural terms, through successive decomposition in ever smaller
components, requiring simple behavioral constructs only for the implementation of simple
logic gates. In practice, however, behavioral constructs are used to accomplish slightly
more high level tasks.

The behavioral constructs of VHDL deserve further elaboration. In its simplest form, a
behavioral statement in an architecture body assigns a value to an output signal. These
values can be computed from input- or internal signals or variables using simple arithmetic
operations or elementary conditional constructs. Consider the following examples:

-- Simple signal assignment
foo <= 3;

-- Arithmetic on input signals
bar <= baz + quux;

-- Switch/case like construct
with quux select

zow <= 7 when 0,
1 when 1,
8 when 2,
2 when others;

Contrary to the imperative programmer’s intuition, statements such as the above are exe-
cuted concurrently, not sequentially. The output signalsbar andzow are, for example,
updated concurrently as the input signalquux changes value. Signal assignments such
as these are examples of pure behavioral, declarative programming, as the synthesis tool
is responsible for the generation of an appropriate circuit. The developer can be assured,
however, that the generated logic for these statements will be combinatorial, not sequential.

In addition to this concurrent form, VHDL allows a second type of behavioral code, which
is more akin to imperative programming: the ‘process’ construct. Aprocessconstruct is a
sequential statement block, which is executed each time one of the signals in itssensitivity
list changes value. The body of a process can contain many of the familiar constructs from
imperative programming, such asif/else -statements, loops and switches. While the
programming model of the process construct is purely sequential, the synthesis tool is at

5Very High Speed Integrated Circuit

26



liberty to generate an equivalent combinatorial circuit, whenever possible. An example of
process code is given below:

-- A driver for a blinking LED
foo: process( clock )
begin

if ( rising_edge( clock ) ) then
case state is

when LED_ON =>
state <= LED_OFF;
led <= ’0’;

when LED_OFF =>
state <= LED_ON;
led <= ’1’;

end case;
end if;

end process foo;

A more thorough introduction to VHDL can be found in [7].

Model of computation

Given its position at the top of a larger tool stack, it is not surprising that the synthesis
target of XST resembles one of our purely abstract models of computation rather closely:
the gate level description. Specifically, XST generates NGC6 netlists as output. Anetlist
is a description of physical components and their interconnections. The netlists that are
output by XST contain only elementary logic components, such as gates and flip-flops, and
possibly ‘black box’ components, such as adders and multipliers, if these are supported by
the hardware. At this stage, little to no consideration is given to the actual configurable
logic blocks of the target hardware, aside from the aforementioned high level components.

The transformation from a gate level description to a netlist of actual, model specific CLBs
is the responsibility of the next layer in the ISE tool stack: themapper. The mapper iden-
tifies and replaces small groups of gates or a single flip-flop with an equivalent CLB.

The next layer in the ISE stack is occupied by theplace and routetool. This tool assigns
each ‘virtual’ CLB to a physical unit on the FPGA surface, i.e. it performsplacement. The
configuration of the flexible routing mesh is generated simultaneously, in order to realize
the required interconnections, whilst minimizing propagation delays. After the place-and-
route phase, only one trivial transformation remains: the generation of a configuration bit
stream for the FPGA.

In a VHDL program, parallelism is explicitly defined by the programmer at the statement
level. The synthesis tool performs no special transformations to extract implicitly parallel
constructs.

3.3.2 DEFACTO

The DEFACTO system —a Design Environment For Adaptive Computing TechnOlogy—
is a synthesis tool that maps conventional high-level programming languages, in particular
the C language, onto FPGA based computing platforms [20]. DEFACTO is partially funded
by the Defense advanced Research Project Agency (DARPA) and Boeing Satellite Systems.

6NGC netlists are a proprietary format that resembles, and can be converted to, the standardized EDIF netlist
format. Xilinx uses this format to facilitate better communication between XST and the tools in the lower layers
of the ISE stack.
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Source language

DEFACTO may be regarded as the canonical example of what is known in the literature as
the ‘dusty deck’7 approach to reconfigurable computing: it is a direct attempt at generating
FPGA bitstreams from legacy C code. From a language perspective, the programming
model is thus purely behavioral and purely imperative.

Model of computation

The DEFACTO synthesizer generates code for a fixed-plus-variable architecture with a
moderately close coupling between the FPGA fabric and the sequential host processor,
e.g. a PCI-based FPGA coprocessor setup. After conventional code optimizations, the first
phase in the code transformation process is to partition the application into a host part and
an FPGA part. After this partitioning, the synthesis target for the FPGA-branch of the
application is a behavioral VHDL program. DEFACTO can thus be viewed as a bridging
synthesizer between C and VHDL. Its model of computation is not one of the models dis-
cussed in Section3.2. Rather, it is the mixed structural/behavioral model of VHDL. The
actual transition from behavioral to structural design is thus carried out by the VHDL syn-
thesis tool.

Since the VHDL target language is a language which contains explicit parallel constructs,
the main task of the DEFACTO compiler is to extract the implicit parallelism from the
C source code and to make it explicit. This is accomplished through a rather awkward
procedure. After eliminating conditional statements8, the suite employs ‘heroic’ compiler
techniques to identify implicit loop parallelism. The sheer number of different techniques
for this purpose that the authors describe is impressive, and somewhat worrying. After the
loop analysis, a lengthy and unpredictable procedure determines the extent to which the
loops are to be unrolled, to minimize runtime and optimize space utilization. This last pro-
cedure, which is dubbedestimationand/orautomatic design space exploration, involves an
iterative process of parameter tweaking, recompilation and automated benchmarking.

3.3.3 SA-C

The Single Assignment-C [38] compiler is the product of the Cameron project [18]; a
collaborative research effort which aims to improve the accessibility of FPGA-based re-
configurable computing platforms. The Cameron project was started in May of 1999 at
Colorado State University. It currently runs in collaboration with the University of Califor-
nia at Riverside and Khoral Research, Inc.

Before venturing into the details of the SA-C language and its model of computation, it
deserves mention and praise that its designers have been amongst the few to illustrate the
potential of their solution with hard empirical data. In [38], the authors provide experi-
mental data from a number of image processing applications. In these experiments, the ef-
fective turnaround time of an FPGA-based SA-C implementation was compared to that of
an equivalent C implementation on a commodity workstation9. The observed application-
dependent speedups ranged from a factor 8.8 (adding a constant value to each pixel in an
image) to a factor 800.0 (automatic target recognition) in favor of the SA-C implementa-
tions.

7’Dusty deck’ is derogatory hacker jargon for legacy code. The term was devised to recall images of the days
of punch-card programming.

8The exact procedure is similar to that used in the Machines system, which will be discussed in 3.3.4.
9A Xilinx Virtex E 2000 FPGA and an 800 Mhz. Intel Pentium III MMX were used in the experiments.

28



Source language

As its name suggests, the source language of the SA-C compiler is a relative of the C pro-
gramming language. Compared to the purist approach of DEFACTO, however, it is but a
distant cousin. The main distinction between SA-C and C is the ‘single assignment’ re-
striction of the language. In a single assignment language, a variable may be assigned a
value only once during its lifetime. Other important restrictions include the inhibition of
recursion and the lack of a pointer dereferencing operator (‘* ’). These restrictions exist to
remove the direct bindings between variables and their physical (i.e. memory) locations,
inherent in the C language, thus allowing an easier mapping of variables onto circuit wires.

Apart from its restrictions, SA-C introduces a number of new concepts, which serve to
compensate for some of the imposed restrictions. The most prominent extensions include
true multidimensional arrays, dynamic arrays and an efficientfor -loop for data processing
on an array window. An interesting addition comes in the form of variable sized integer
types, e.g.int12 , uint128 , etc. To alleviate the single assignment restrictions, the reuse
of variable names is allowed.

To aid code generation, the SA-C compiler supports a number of compiler pragmas that
allow the programmer to control certain aspects of the generated code. Amongst the op-
tions are pragmas for enabling/disabling loop unrolling, strip mining and the possibility to
implement a function as a lookup table. Another interesting feature is the SA-C preproces-
sor, which offers template/generics support, similar to that of C++ and Java.

Model of computation

The astute reader may already have noticed a correlation between the acyclic nature of
the data-flow model of computation and the single assignment restriction of SA-C. In both
cases, data is pushed ‘forward’ throughout the computation, inhibiting the possibility to
reuse data storage locations. The similarities are no coincidence, as the data-flow network
is indeed the SA-C compiler’s model of computation.

The restrictions of the SA-C language were designed to make the synthesis process reason-
ably straightforward. During the initial build phase, adata-dependence and control-flow
graph is generated. This is a hierarchical graph, which reflects the structure of the source
code in terms of loops and function calls. The DDCF representation is then optimized to
exploit function- and loop level parallelism, and to decrease circuit size. The DDCF rep-
resentation is subsequently transformed to a data-flow graph, as per our earlier definition.
In the final phases, this graph will be annotated with timing information, to allow further
machine-specific optimization. Finally, structural VHDL code is generated as output.

3.3.4 Machines

Machines [42] is a programming model that was designed to bring the power of reconfig-
urable computing closer to the conventional application programmer. Application of the
model requires an object-oriented host language and a special compiler. A C++ implemen-
tation of the model exists in the form of an unnamed compiler. The Machines model and
its C++ compiler were developed at Hewlett-Packard Laboratories.

Source language

Machines is a class hierarchy that can be implemented in any conventional object-oriented
programming language. At the basis of the hierarchy is theMachine -class, which defines
the pure virtual/abstractstep() method. The programmer creates an application by ex-
tending theMachine class and implementing thestep() method. All machine instances
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in an application execute concurrently. The runtime environment calls theirstep() meth-
ods at each ‘cycle’.

A child of Machine may contain state variables in the form of class attributes. These
attributes must either be simple data types (integers, booleans, etc.) or other Machines.
Machines can communicate through inputs and outputs, which can be defined by adding
input() andoutput() methods to the child class. A Java example, adopted from [42],
demonstrates how a simple low-pass filter may be implemented:

class LowPassFilter extends Machine
{

int state = 0; // State variable
protected int inputData; // ‘Buffered’ input.

void input( int in ) { inputData = in; }
void step() { state = state/2 + inputData/2; }
int output() { return state; }

}

Another example demonstrates the composition of Machines into a pipeline of low-pass
filters:

class FilterPipeline extends Machine
{

LowPassFilter[] stages = new LowPassFilter[10];

void step();
int output() { return stages[9].output(); }
void input( int in )
{

stages[0].input(in);
for ( int i = 1l i < 10; i++ )

stages[i].input( stages[i-1].output() );
}

}

The Machines system combines structural semantics at the macroscopic level with behav-
ioral semantics at the instruction level. In this approach it is not dissimilar to VHDL. The
boon of Machines, then, is that it has a much friendlier face, at least to those accustomed
to conventional programming languages.

As a final note on language: the authors of [42] provide data from a small comparative
study of C++/Machines vs. hand-crafted VHDL, in which the Serpent block cipher [6] was
used as an example application. It is unfortunate, however, that clock rates and gate uti-
lization are the only metrics cited in the paper10, leaving us guessing at the differences in
effective turnaround time.

Model of computation

Machines is a prime example of thecommunicating sequential processesmodel of compu-
tation. Each user-definedMachine class instance is initially treated as a separate entity
in a graph of communicating processes. As we mentioned at the time of its introduction,
the CSP model is not a complete model of computation. An additional strategy is required
to synthesize code for the sequential process bodies. In the Machines-case, the number of
possible states of the concurrent processes becomes quite large, as each Machine can have
an arbitrary number of internal variables. It for this reason that the system uses a hybrid

10Tuned C++/Machines implementations used approx. 66 percent of the gates and ran at nearly three times the
clock speeds of the hand-crafted VHDL implementation.
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model of computation. Thedata-flow graphmodel is used for the synthesis of process bod-
ies. The transformations used are similar in nature to those used in tools like DEFACTO
and SA-C. We have avoided a detailed discussion of this process until this point, because
the Machines designers offer an exceptionally clear description of the two key techniques:

Static single assignment conversion In our treatment of the SA-C language, we saw
that the single-assignment restriction was imposed on the programmer in order to facilitate
convenient data-flow graph generation. The Machines model imposes no such restriction.
Instead, it employs an elegant transformation algorithm to create a single-assignment form.
The algorithm simply tags each variable in the original source code with an index. This
index is incremented each time a value is assigned to the variable. In subsequent right-hand
side use of the variable, the variable with the current index is used, effectively creating a
new variable for each value assignment.

Predication With the static single assignment transformation, we have the means to cre-
ate a data-flow graph from a series of unconditional imperative statements. Conditional
constructs still pose a minor challenge, however, as the following example demonstrates:

void foo()
{

int x = 3;
if ( quux ) x = 7;
y = x;

}

If we attempt to apply the static single assignment transformation tofoo() , we encounter
a problem at the point wherey is assigned a value: which index wouldx have ifquux were
true, and which if it were false? One solution to this problem is to guard each statement in
the source program with a predicate that controls its execution, e.g.:

void foo()
{

int x = 3; : if( true );
x = 7; : if(quux);
y = x; : if(true);

}

This predication technique, which is due to Mahlke [35], can be used to eliminate any
conditional construct. During the static single assignment transformation phase, the guards
are simply assumed to be true. The guards are implemented in hardware during the final
stages of synthesis, i.e. controlling whether a statement operates on its input data or merely
propagates it unaltered.

The Machines synthesizer extracts parallelism in two ways. On the one hand, there is
the explicit task-level parallelism that is explicitly specified by the developer. On the other,
a certain degree of statement- and instruction-level parallelism emerges naturally from the
transcription to a data flow graph. The Machines compiler does not use advanced loop op-
timizing techniques. Rather, it relies on the explicit task level parallelism to bring the large
performance gains.

3.3.5 Lava

Lava [12] is a new tool for circuit design, synthesis and simulation. It consists of a collec-
tion of modules for the programming language Haskell [31]. Lava is an experimental tool
with two current incarnations: Chalmers-Lava from Chalmers University of Technology,
Sweden, and Xilinx-Lava from Xilinx, Inc. The former is aimed at formal hardware veri-
fication, whilst the latter is being developed with FPGA development in mind. According
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to reports on the Chalmers website [17], both parties are moving to unify the two versions.
Whether Xilinx is still actively involved is unclear, however, as the Lava page has been
removed from the company’s website some time during the writing of this report.

Source language

Much like the Machines model of Section 3.3.4, Lava is an ‘embedded language’ that uses
another programming language, in this case Haskell, as a host language for circuit mod-
eling. Contrary to the OO host languages of Machines, Lava’s host language Haskell is
a purely functional programming language, i.e. all computation is performed through the
application of functions without side effects. Functions are first class types in Haskell.

The Lava system revolves around the definition of aCircuit -class11, for types on which
basic bit-level operations likeand andor are defined. Extensions to the class exist for
higher level circuits, which for example support arithmetic operations. A hardware circuit,
then, is described by defining a function that operates on one of the data types of the Circuit
class. A half adder example:

halfAdd (a, b) = (sum, carry)
where

sum = xor2( a, b )
carry = and2( a, b )

The example shows the definition of a function that accepts a tuple of bits as an input.
Thexor2 andand2 functions are defined in the Lava package. The package also offers a
function for circuit simulation. The output of a test run on thehalfAdd circuit description,
fired from the Haskell listener:

main> simulate halfAdd(high,high)

(low,high)

Through function composition, circuits of arbitrary complexity can be defined. The pack-
age itself provides type classes and standard functions for higher-level circuits, e.g. for
arithmetic- and list processing. Synthesizing these circuits is as convenient as simulating
them:

main> writeVHDL "FullAdder" fullAdd

Writing to file "FullAdder.vhdl" ... Done.

The embedded modeling language of Lava makes effective and elegant use of the host
language’s features in many interesting ways. We have chosen not to spoil our simple
impression by presenting these details here. For a thorough introduction, we refer to the
informative Lava tutorial [34].

Model of computation

ThewriteVHDL function from the Lava package generates a gate level description. The
generated VHDL code is purely structural. In the Lava system, synthesis is accomplished
by evaluating the circuit description functions on a special input type. The VHDL sources
are generated as a side effect12.

11In functional languages, atype classis a means of grouping types by the operators that are defined on them.
TheOrd class, for example, consists of all types that can be ordered, i.e. that have== and< operators defined on
them. The Integer, for example, would be in theOrd -class, whilst a color would not be, for lack of an< operator.

12Since Haskell is a purely functional language, side effects can only occur using the language’smonadic
facilities. Monads, unfortunately, cannot be introduced in a mere sentence. We will leave the reader with a
reference to a reasonably short introduction to monads instead [1].
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A very elegant property of the Lava system is the clear relation between the behavioral
semantics of the language and the structure of the generated circuit. Due to the fact that
functional languages are stateless, one can easily see how a complex expression can be
translated to a data flow graph that carries inherent statement level parallelism. Since
Lava’s intended use is that of hardware definition, rather than computing, the language
provides no constructs for task level parallelism.

3.3.6 GCC/Chimaera

GCC/Chimaera [48] is a C compiler for the Chimaera [29] reconfigurable architecture. The
compiler was built upon the foundations of GCC [22], the familiar open source compiler
framework of the GNU project. The Chimaera port of GCC was developed at Northwestern
University, Illinois. It is not part of the GNU project or the official GCC distribution.

Source language

The GCC/Chimaera compiler is in many respects a fairly standard-issue GCC port. The C
language front-end of the suite contains no new code. Significant features of the tool are
only found at the back-end.

Model of computation

True to the intentions of Chimaera’s designers, the compiler synthesizes code for a cus-
tom instruction set architecture, or rather, an augmented instruction set architecture. The
generated code consists of regular RISC instructions for the architecture’s fixed logic, in-
terspersed with custom operations for the reconfigurable functional unit (‘RFUOPs’). The
limitation of this model of computation is that task level parallelism is not exploitable.

From the compiler’s perspective, an RFUOP can be any operation on multiple input regis-
ters, as long as the resulting value fits in a single output register. We will now discuss the
source-to-silicon transformation in some detail, in order to understand where and how the
RFUOPs are synthesized.

The GCC framework has a flexible design, which facilitates different source languages and
targets. Internally, the framework uses a target- (and source-) independent intermediate rep-
resentation: theregister transfer language, or RTL. The GCC framework performs generic
early optimizations (e.g. constant folding, common subexpression elimination, etc.) on the
RTL representation, before the Chimaera-specific optimizations are performed. These lat-
ter optimizations, which are also performed on the RTL representation, serve to identify
the RFUOPs.

The identification of RFUOPs is accomplished in three steps, named and briefly described
as follows:

Control localization is a technique that replaces basic blocks with multiple input/output
macro instructions. In the special case where only one output register is needed,
these macro instructions can be replaced with RFUOPs immediately. Other macro
instructions, i.e. those which require multiple output registers, are saved for further
optimization during theinstruction combinationphase.

SWAR optimization or ‘SIMD Within A Register’ optimization identifies opportunities
to split the bits of a group ofm input registers into multiple smallern-bit fields
for collective SIMD processing. This can, for example, be useful for repetitive pro-
cessing on large arrays. In this phase, candidate loops are replaced with a series
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of pseudo-instructions, which can be recognized during the instruction combination
phase.

Instruction combination is the process of determining which instructions can be imple-
mented on the Chimaera functional unit, including but not limited to the special
macro instructions and SWAR sequences identified during the first two phases13. A
configuration is then generated for each replaceable sequence.

For all its effort, the GCC/Chimaera compiler achieves an average speedup of2.6 over
‘-O2’ optimized non-Chimaera code for a set of benchmark problems [48].

3.3.7 Other synthesis tools

Although the case studies were selected to illustrate a wide variety of approaches, their
number is inevitably small in comparison to the sheer number of experimental synthesis
tools and strategies that have been proposed in recent years. To an extent, all of these tools
represent unique approaches, and a study at least ten times the size of this one would be
needed to cover them all. We provide a quick impression:

A number of systems adopt the ‘OO hardware modeling’ approach of the Machines system,
in combination with a modeling framework in a standard- or slightly adapted sequential
programming language. These languages typically target communicating sequential pro-
cesses. The C++ based SystemC [43] and the Java 1.1 based JHDL [9] are mature examples
of the Machines-approach. Celoxica’s Handel-C [?] is a slightly more abstract variation.
It uses a C dialect with explicit parallel constructs and coarse-grained communicating se-
quential processes.

While not technically synthesis tools for reconfigurable platforms, there exist a family of
‘reactive programming’ languages and compilers that have an execution model which is
similar to the simple CSP model (i.e. the concurrent state machines model). These lan-
guages have mostly been developed in the mid- to late 1980’s, for the express purpose
of embedded systems development. They can easily be adapted for use on fine-grained
reconfigurable computers. The most important languages in this family are Esterel [11],
Lustre [16], Signal [10] and the visual programming system Statecharts [27]. Aside from
their common model of computation, these languages are all radically different.

Variations on the ‘custom instruction set’ theme of Chimaera come in the form of Spy-
der [32], which utilizes user-defined, hardware accelerated operators within a C++ frame-
work, and the NAPA C [24] compiler, which maps a C dialect with special compiler di-
rectives onto the NAPA1000 combined RISC/FPGA architecture. The compiler of the
PipeRench system combines the data-flow network model with a custom instruction set
architecture.

The data-flow target model of SA-C is used in a number of hardware platforms and their
associated development tools. Interest in these architectures bloomed in the 1980’s. Promi-
nent examples include the synthesis tools of the Manchester Prototype Dataflow Com-
puter [26], Monsoon [39] and the Sigma-1 [49] machine.

At the base of our discussion of synthesis tools was a collection of loosely defined models
of computation. It is worth mentioning that a number of formal models for concurrent com-
putation exist, notably Petri nets and Kahn process networks. These models are sometimes
used as abstract targets in synthesis tools. The Compaan/Laura system [50], for example,

13At present, only simple arithmetic and shift operations are supported on the RFU.
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generates Kahn networks from Matlab source code, as an intermediate target for FPGA
based computation.

3.4 Conclusion

A good synthesis tool must generate code that exploits the hardware’s opportunities for
parallelism effectively. Ideally, it must hide the structural nature of the hardware and ex-
tract implicit parallelism from the source program. These idealized goals can hardly be
achieved in practice. Synthesis tools that generate effective code require some concessions
in the source language, i.e. either explicit constructs for parallelism or for structural pro-
gramming. In table 3.4, we have listed a summary of properties of the reviewed synthesis
tools. The table lists the programming paradigm and the model of computation of each
synthesis tool, and an indication whether the source language has explicit constructs for
parallel programming and/or structural modeling.

Tool Paradigm MOC Parallelism Structure
XST Mixed Gate level description Explicit Explicit
DEFACTO Imperative Data flow network Implicit Implicit
SA-C Imperative Data flow network Explicit Implicit
Machines OO CSP/Data flow network Explicit Explicit
Lava Functional Gate level description Implicit Explicit
GCC/Chimaera Imperative Custom instruction set Implicit Implicit

Table 3.1: Synthesis tool summary

In Section 1.4, we presented three criteria by which we could assess the quality of RC de-
velopment platforms. We will now conclude our study of synthesis tools by relating the
theoretical discussion of Sections 3.1 and 3.2, and the case studies of Section 2.2 to these
assessment criteria.

Admittance We recall from Section 1.4 thatadmittanceis the extent to which a platform
allows for the implementation of efficient applications. Centering purely on synthesis tool
design, we can assess the admittance of a development platform by comparing the per-
formance of a optimized reference application to that of an implementation of the same
algorithm on a conventional architecture. It is unfortunate that we have had to observe
that most of the reviewed publications on synthesis tool designs lacked meaningful per-
formance data. Given that performance is the central issue in reconfigurable computing,
this is quite inexcusable. This leaves us to conclude that there is insufficient data available
to make solid general statements about the effects of source languages and/or models of
computation on the quality of the generated code. Based on the small amount of data that
is available to us, however, we can conclude that:

• The custom instruction set model of computation, as demonstrated by the Chimaera
GCC compiler, does not admit very efficient implementations, due to the fact that the
model does not allow larger task units to be executed in parallel.

• The impressive speedups cited by the authors of the SA-C system prove that the data
flow model does admit, at least for selected applications, implementations which are
more efficient than what can be achieved on conventional architectures.

• Based on knowledge from conventional parallel programming and on the previous
point, it is to be expected that a hybrid CSP/data flow network model will yield
equally good results.
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Accessibility To paraphrase our definition from Section 1.4, the accessibility criterion
states that the tool suite for an RC platform should facilitate application development within
a reasonable timeframe, compared to development on traditional architectures. The acces-
sibility of a development platform is, in our opinion, dependent upon three factors:

• The semantics of the source language.

• The turnaround time of the synthesis tool.

• The availability of debugging facilities.

When it comes to accessibility, there is a watershed to be made between the ‘dusty deck’
compilers, such as DEFACTO and, to a lesser extent, the systems which use a conventional
language as a host language on the one hand, and the hardware description languages,
like VHDL and Verilog, on the other. The benefits of the former group over the latter are
evident:

• The familiarity of a traditional language makes a platform immediately accessible to
a large number of existing developers.

• Programs can easily be evaluated on traditional workstations for simulation purposes.

• Development times lie in the same ranges as those of traditional applications.

• Developers do not have to deal with hardware related details, such as timing signals,
which have nothing to do with the algorithm under consideration.

In relation to source language semantics and debugging facilities, there is no added value
to using a HDL over any of the higher level languages for computing purposes. As the
DEFACTO system proves, however, there is a considerable penalty to be paid in synthesis
tool turnaround time if the use of a higher level language requires elaborate design space
exploration techniques in order to yield acceptably efficient code.

Transparency The transparency criterion from Section 1.4 stated that the designs gen-
erated by a synthesis tool should harbor no unpleasant performance surprises. There is a
clear lesson to be learnt here from the DEFACTO system, with its arcane synthesis process.
It is that pure dusty deck imperative code is too difficult to compile into efficient hardware
without having to resort to elaborate and unpredictable procedures. While the idea of hav-
ing a C-to-hardware compiler is appealing from an accessibility perspective, it is virtually
impossible to design such a compiler without sacrificing either transparency or admittance.
Or, to paraphrase a familiar adage: “easy, fast, reliable: pick two.” In conclusion, since ex-
ecution speed and reliability (transparency) are the essential qualities here, we believe that
it will be inevitable that a good synthesis tool will need special source language constructs
to aid effective code generation for RC platforms.
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Chapter 4

Designing synthesis tools

In Sections 2 and 3, we presented an overview of the considerations and tradeoffs involved
in the design of reconfigurable hardware platforms and their development tools. In the
subsequent conclusions, we made a case for the further investigation of fixed-plus vari-
able hardware architectures that are based on fine-grained reconfigurable fabrics. We es-
tablished that the central issue in the development of such platforms is the design of the
synthesis tool. In this section, we address the design of synthesis tools in more detail, in
the form of a series of design strategies. At the end of this section, we present a research
proposal, based on these design strategies.

4.1 Design strategies

The quest for the perfect synthesis tool —or perhaps merely a satisfactory one— can be
approached from a number of different starting points. While the result is all that matters
in the end, our choice for a home base has great effect on the length and difficulty of the
journey. In this section, we discuss what are in our view the four possible starting points
for synthesis tool design.

The language-oriented approach

In the first of our four design strategies, we choose the source language —or one might
argue, the user— as a starting point. Since the goal of synthesis tool design is to create
an environment where implementations can be realized in a ‘comfortable’ programming
language, it makes some sense to assume such a language from the outset, and to implement
it in a top-down fashion. We call this approach thelanguage-oriented approach, and it is
summarized as follows:

1. Design or choose a programming language which provides practical behavioral se-
mantics for the expression of algorithms.

2. Create transformation methods for each of the language’s behavioral constructs.

The language-oriented approach is at the basis of many of the actual systems that we have
reviewed. The ‘dusty deck’ tools like the DEFACTO system assume an existing program-
ming language as a starting point, and then bravely attack its constructs with aggressive
transformation- and optimization tactics, in order to arrive at a satisfactory result. Other
tools, such as the OO based Machines and the Lava system, are also examples of this ap-
proach.
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The target-oriented approach

The construction of a bridge may be commenced at either side of the water it crosses.
While our first design strategy assumed the language of the human developer as a starting
point, our second strategy can be considered its inverse. In thetarget-oriented approachto
synthesis tool design, the platform’s reconfigurable fabric is assumed as a given, and the
language is constructed upon it in a bottom-up fashion. The approach in a series of steps:

1. Choose an model of computation which accurately captures the low level capabilities
of the hardware.

2. Successively create higher-order behavioral abstractions on top of the hardware model.

While hardware description languages like VHDL and Verilog were developed with a dif-
ferent goal in mind, the tools that synthesize them onto hardware can be considered dis-
torted real-world examples of the target-oriented approach. HDL synthesis tools, such as
the discussed XST, generally support the low-level structural semantics of the underlying
hardware, and attempt to support as many behavioral constructs as possible, whilst main-
taining reasonably efficient mappings. A rare and interesting example of a purely target-
oriented approach is the Crystal language [45]. We will return to this language in more
detail in the discussion of Sectionsec:discussion.

The algorithm-oriented approach

Our third design strategy is somewhat orthogonal to the first two. It is based on the ob-
servation that most computational problems can be decomposed into fairly generic sub-
problems, such as vector multiplication, sorting, satisfiability, etc. Rather than creating a
programming language in which the user can express complex algorithms, one could offer
a simple composition language, combined with an ever-expanding toolkit of generic solu-
tions to computational problems, all of which are implemented in some low-level language.
The strength of this approach is that it avoids the difficult transition from programming
language to hardware design by skipping the language phase altogether. Its weakness, of
course, is that its usefulness is limited by the size and quality of the toolkit. We call this
strategy thealgorithm-orientedapproach. It is summarized as follows.

1. Devise a rudimentary algorithm-composition language.

2. Develop a toolkit full of efficient implementations for a set of common algorithms.

As mentioned, the algorithm-oriented approach can be deployed in conjunction with one of
the earlier methods. In the FPGA market, so-called IP cores (’intellectual property’ cores)
are available, which offer efficient implementations complete algorithms. The algorithms
implemented in these cores are usually somewhat larger than the examples posed above1.
A more clear example of the idea is found in traditional parallel programming frameworks
(e.g. MPI), which offer library functions for efficient parallel execution for e.g. matrix row
reduction and prefix summing.

The domain-oriented approach

Our final design strategy is a radically different approach, which is again orthogonal to its
precursors. It is based on the idea that similarly natured problems generally require simi-
larly structured implementations. By making bold assumptions about the type of problems
that are to be implemented using the system, the complexity of the subsequent synthesis
process can be cut down considerably. This final strategy is dubbed thedomain-oriented
approach:

1Examples include image processing algorithms, encryption, etc.
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1. Define a limited application domain for the synthesis tool.

2. Identify common properties of the problems in the domain.

3. Employ one or more of the other design strategies, using the identified properties as
axiomatic assumptions about the computation.

The domain-oriented approach is a design strategy that is clearly demonstrated in synthesis
tools and hardware platforms alike. An illustrative example is the Streams-C [23] language,
which adopts digital signal processing applications as its problem domain. The Streams-C
designers go on to assume that the algorithms in this application domain require regular,
repetitive operations on steady, high volume data streams. Axiomatic assumptions such
as these imply a great deal of generic architectural infrastructure, which greatly reduces
the creativity requirements of the synthesis tool. Other systems that are biased toward
particular application domains include PipeRench (stream-based media appplications) and
DFFC (real-time vision automata). A very large group of systems are targeted at large
volume data processing applications in general, i.e. ignoring intrinsically difficult problems
that are not data-driven, such as SAT, number factorization, etc. These systems include:
SA-C, Chimaera, Garp and, to an extent, Raw.

4.2 Discussion

Our first design strategy, the language-oriented approach, leaves room for a number of in-
teresting questions. Starting with step 1 of the strategy, one might ask what we consider to
be a language with practical behavioral semantics. In the history of computing, imperative
languages, for example, have gained a large cultural stronghold in our thinking about algo-
rithms, and many would argue that these languages are the most practical languages for the
purpose, merely because of this fact. Unfortunately, we have seen in the earlier sections
that implicit parallelism is difficult to exploit in imperative languages, making it hard to
generate optimal hardware designs.

The flaws of the language oriented approach, however, are not limited to the imperative
paradigm. They are inherent to the approach itself: one cannot, in general, design a pro-
gramming language in isolation and develop a compiler that generates perfect code after
the fact. We cannot do this for abstract programming languages on conventional platforms,
so we should not expect to be able to do this on RC platforms either. It is for this reason
that any dusty deck effort is doomed to fail.

Rather than adopting a language like C as a programming language and developing a syn-
thesis tool around it, we should use C as an example of a language that has become highly
successful in its natural habitat. Rather than taking it away from the Von Neumann archi-
tecture, we should look at what made it such a success there, and emulate its development
process in the new environment. The C language was developed from the ground up, as
an elegant abstraction of assembly language, which could greatly reduce theaccidentof
programming, in Brooks [14]’ terminology, without compromising the admittance of the
platform for fast implementations. Our target oriented approach reflects this approach: we
should be able to develop more effective synthesis tools if we work our way up from the
hardware, rather than down from the language. In general, it is good software engineering
practice to start with a simple program that actually works well and expand its abilities,
than to work downward from a broad set of idealized features.

As an example of the strengths of the bottom-up approach, we have already mentioned
the Crystal language [45]. It is an elegant language that allows a developer to define mem-
ory components (e.g. registers) and to express synchronous state transition rules for these
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components. The strength of the Crystal language is that it admits efficient implementa-
tions to the extent that HDLs do, yet it hides much of the tedium and verbosity of true low
level descriptions.

The beauty of the two final design strategies is that they can easily be combined with
the target oriented approach if so desired. Once the foundations of a language have been
established, it should be reasonably straightforward to offer optimized implementations of
commonly used algorithms in the form of add-on modules, thus encapsulating the algo-
rithm oriented approach in a library system. Similarly, will be straightforward to develop
domain specific languages using the hardware oriented approach.

4.3 Conclusion

The goal of reconfigurable computing is to create implementations that are faster than what
can be achieved on conventional platforms. Developer friendliness is important, but it is
a secondary concern. In order to create convenient programming languages that do not
hamper the potential for speedup, we will need to develop languages from the ground up,
rather than top down. In order to do this, we will need to establish a body of programs,
written in a low level language (a HDL), which demonstrate and exploit the full potential
of the reconfigurable hardware. We can then proceed to develop an efficient programming
language for RC platforms by doing away with the unnecessary details of these programs.
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Chapter 5

Conclusion

In this report, we presented a survey of reconfigurable computing systems. We began this
survey with the establishment of the motivation for the development of such systems, and
of a set of criteria by means of which both the hardware designs and the application de-
velopment tools of such platforms could be assessed. We have subsequently discussed the
general design properties and a number of actual examples of both hardware systems and
development tools.

In Section 2.3, we concluded thatfine grained, heterogeneous, fully reconfigurablearchi-
tectures, such as FPGAs, offer the best opportunities to gain insight into the fundamental
strengths and weaknesses of reconfigurable computing. In section 3.4, we concluded that
there is a general lack of quantitative evidence for the hypothesis that reconfigurable archi-
tectures allow for faster implementations of algorithms than conventional architectures. On
a related note, we concluded that it is not possible to make strong general statements about
the relative merits of different synthesis tool designs, given this lack of information.

Apart from questions surrounding performance issues, we concluded that little progress
has been made in the development of an convenient, abstract programming language that
is reasonably transparent to the developer. We suspect that this is in part due to the fact that
many ambitious, top down approaches have been explored, in contrast to few pragmatic,
bottom up ones.

In light of these results, we propose a research project in which we aim to:

• produce quantitative evidence for the hypothesis that fine-grained reconfigurable
computing machines admit implementations of algorithms that are significantly faster
than equivalent implementations on conventional architectures.

• seek progress in the development of a language which improves the accessibility of
fine-grained reconfigurable systems as an application development platform, whilst
maintaining a high degree of transparency and admittance.

We propose the following course of action:

1. We will develop a number of FPGA-based solutions to a variety of computational
problems, using a traditional hardware description language.

2. We will compare the effective turnaround times of these FPGA-based implementa-
tions to equivalent software implementations of the same algorithms on a conven-
tional architecture.
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3. We will attempt to identify and generalize common algorithmic constructs from our
experimental implementations, in order to produce a rudimentary programming lan-
guage, using the bottom-up, hardware oriented design approach described in Sec-
tion 4.1.
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