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Abstract

The readily available performance advantages,
gained in early virtual circuitry systems, are being
recouped following advances in general purpose pro-
cessor architectures and have resulted in a question-
ing of the tractability of applying virtual circuitry in a
general software environment. This paper highlights
two primary limitations of existing virtual circuitry
systems: technical bandwidth limitations, imposed by
the use of a shared peripheral bus to interconnect the
con�gurable logic and host processor; and the abstract
complications involved in traversing the hardware soft-
ware divide within the inherently hardware/software
co-design environment of a virtual circuitry system.
The Flexible URISC is introduced as an array resident
minimal processor architecture with the potential to ex-
ploit self-reference and self-modi�cation. Performance
results of a prototype implementation of the Flexible
URISC architecture demonstrate how peripheral bus
bandwidth limitations are overcome by the increased
bandwidth available to an array resident con�guration,
communication and computation agent. A discussion
of the programming environment of the Flexible UR-
ISC is given, and provides the medium for identifying
how the Flexible URISC's single instruction { move {
e�ectively minimises the hardware/software divide.

1 Introduction

Increases in FPGA density and 
exibility have done
much to improve the tractability of the concept of vir-
tual circuitry1, yet exploitation of custom hardware

1For reasons discussed in [2], the term virtual circuitry is
used in preference to virtual hardware

co-processing has remained the elusive attribute of a
restricted set of application classes. This is in contrast
to the early calls to revolutionise the general comput-
ing industry with the widespread deployment of vir-
tual circuitry. General purpose processor systems, as
has been revealed by case study[7], have also been suc-
cessful in recouping a signi�cant amount of the readily
available performance advantages gained by early vir-
tual circuitry systems.

Key issues in sustaining the elusiveness of a wide-
spread application of virtual circuitry stem from con-
straints imposed by the environment in which virtual
circuitry is typically deployed, and the complexities
of negotiating the hardware software divide. An a-
typical setting for a virtual circuitry system is one
where an FPGA is coupled to a host processor sys-
tem via the host peripheral bus. The FPGA works
exclusively as a slave co-processor, under the man-
agement of software component executing on the host
processor. Virtual circuitry systems have been classi-
�ed into various forms[1] yet all are typically applied
in this common setting and, hence, are constrained by
its common trappings. These trappings include the
technical bandwidth limitations of the host peripheral
bus and the penalties incurred in traversing the hard-
ware/software boundary.

The primary aim of this paper is to present an
alternative environment for the deployment of vir-
tual circuitry, in which the limitations of the tra-
ditional virtual circuitry environment have been ad-
dressed. Eliminating these limitations correspond-
ingly increases the tractability of a general deployment
of virtual circuitry. The following section provides
a brief introduction to the Ultimate RISC architec-
ture. Section 3, presents a discussion of a Flexible
Ultimate RISC (Flexible URISC), which forms the



primary vehicle for the tractable implementation of
virtual circuitry. Section 4 relates the Flexible URISC
to existing FPGA based processors and is followed, in
section 5, by the exploration of technical requirements
and implementation issues. The prospect of self modi-
fying circuitry is introduced in section 6 and it's ex-
ploitation to support tractable virtual circuitry is dis-
cussed in section 7. Section 8 discusses a programming
environment for the exploitation of the Flexible UR-
ISC and characterises both runtime and compile-time
versions of the system.

2 The Ultimate RISC

The Ultimate RISC(URISC)[6] is a minimal pro-
cessor architecture with only one instruction: move
memory to memory. Computation is achieved by mi-
grating devices onto the system bus, then mapping
those devices into the memory space of the URISC
processor core. For example, the core of the URISC
machine possesses no ALU; instead, an ALU compon-
ent resides on the system bus and its registers are
mapped into the memory space of the URISC core. By
moving operands to and from the memory addresses
corresponding to the registers of ALU components,
arithmetic computations may be performed.

The datapath of the URISC core, the Instruc-
tion Execution Unit(IEU), is shown in �gure 1. The
primary responsibility of the core is to implement the
move instruction and, since move is the only instruc-
tion, no operand decoding is necessary. Unconditional
jumps are possible by moving the target address into
the memory mapped Program Counter(PC). Condi-
tional jumps are made by adding the contents of a
memory mapped ALU condition code register to an
branch address that is then written back to the PC.
This allows the destination of the jump to be o�set
by the truth or false value contained in the condition
code register.

A standard URISC machine could be implemented
using traditional hardware or on a con�gurable logic
array. The lean resource requirements of the URISC
control and data paths increase the feasibility of an
implementation on con�gurable logic, yet the static
nature of the standard URISC machine excludes any
bene�ts of dynamic recon�guration. The remainder of
this paper, therefore, focuses on the Flexible URISC
machine.
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Figure 1: URISC core datapath, the Instruction Exe-
cution Unit

3 The Flexible URISC

Figure 2 shows the abstract and physical imple-
mentations of a Flexible URISC system on an FPGA.
The primary di�erence between a standard URISC
system and a Flexible URISC system is the Flex-
ible URISC's exploitation of dynamic recon�guration.
Speci�cally, in the Flexible URISC system, dynamic
recon�guration is used to vary the devices which are
currently resident on the system bus.

The Flexible URISC core resides on the FPGA,
alongside a set of Swappable Logic Units(SLUs)[1].
There is a direct correspondence between the set
of SLUs resident on the con�gurable array and the
devices currently resident on the Flexible URISC sys-
tem bus. Indeed, the input and output registers of
each SLU are mapped into the memory space of the
Flexible URISC allowing each SLU device to be ac-
cessed in the same manner as a piece of static hard-
ware. Using dynamic recon�guration, SLUs are dy-
namically placed and replaced, allowing the set of
available devices on the URISC system bus to expand
and contract as required.

The Flexible URISC exploits a memory-style co-
processor interface, such as the FastMaptm processor
interface[3] of the Xilinx XC6200 series FPGA[11].
Notedly, there is no explicit implementation of a sys-
tem bus utilising the con�gurable routing resources of
the FPGA. The Flexible URISC can, instead, exploit
the random access nature of the co-processor interface
to move instruction operands to and from the input
and output registers of the SLUs resident on the ar-
ray. Here, the Flexible URISC is acting primarily as a
communication agent, transferring operands between
SLUs and memory. A more detailed discussion of the
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Figure 2: The Flexible URISC Architecture

use of the URISC as a communications agent within
the virtual circuitry paradigm has already been un-
dertaken in earlier work[2].

The main focus of this paper, and the following sec-
tions is to consider the further bene�ts gained from the
exploitation of the co-processor interface to provide
the URISC a role of being a combined communica-
tion, computation and con�guration agent.

4 FPGA based Processor Systems

A number of previous implementations of a pro-
cessor core on recon�gurable logic have been de-
veloped or suggested[8, 9, 10, 5]. A �rst distinc-
tion between these and the Flexible URISC system
is that where the Flexible URISC has been speci�c-
ally designed to be an entirely stand-alone, self con-
tained processor system, previous systems have relied
on the services of an external host processor or auxil-
iary FPGA. The services typically provided are those
to e�ect dynamic recon�guration.

DISC[8], an advanced FPGA based processor, ex-
ploits partial recon�gurability and facilitates relocat-
able instruction-grain SLUs. Even so, the services of
an auxiliary FPGA are relied upon to provide a partial
recon�guration service that is used in the placement,

removal and relocation of instruction SLUs. DISC's
Linear Hardware Space, a rigid communications me-
dium, exploits the vertical routing tracks of the DISC
FPGA and restricts the relocatability of SLUs to ver-
tical movements only. Instruction SLUs are signi�c-
antly aware of the DISC environment and require ad-
ditional internal logic to interface themselves with the
overall environment.

The Flexible URISC, due to the lack of an explicit
system bus, allows for the placement and relocation on
virtually any unoccupied area of the cell array which
is of the appropriate dimensions. SLU designs may
be of an irregular shape, and are not constrained to
the horizontal geometry imposed in the DISC environ-
ment. SLUs are more freely designed with a geometry
and layout suited to an e�cient implementation of the
functionality being modelled. Furthermore, there is
no additional interfacing logic required within an SLU
other than it's input and output registers. The the use
of the random access nature of the co-processor inter-
face to implement inter-SLU communication provides
any necessary decoding facilities.

Complexity of processor core, and hence the pro-
gramming models they support, is an additional area
where existing systems diverge from the Flexible UR-
ISC. The processor cores of the OneChip and Nano-
Processor systems, for example, are signi�cantly more
complicated than the Flexible URISC core and aim to
present a relatively complicated instruction interface.

The fact that the Flexible URISC exploits a move
instruction is notably more signi�cant than the fact
that only one instruction is supported. Indeed, the
primitive move instruction has signi�cant bene�ts for
negotiating the hardware/software boundary, as dis-
cussed in section 8.

5 Technical Implementation and Re-
quirements

A prototype of the Flexible URISC core has been
implemented using Xilinx XC6200 series Recon�gur-
able Processing Units (RPUs) and a Xilinx XC6200DS
compliant prototyping board. The XC6200DS ref-
erence speci�cation de�nes a system consisting of a
single XC6200 series FPGA, dedicated SRAM and
PCI Bus interfacing logic. A primary novel contri-
bution of the Flexible URISC system is the presence
of an array resident con�guration agent. By this, it is
meant that the Flexible URISC core is capable of dy-
namically recon�guring the FPGA device upon which
it is currently residing. At the abstract level, this is



simply a matter of mapping the con�guration memory
of the FPGA into the memory map of the Flexible
URISC core.

Some key technological advances in the XC6200
RPUs have made the implementation of an array res-
ident con�guration agent possible. The ability for
user array logic to access the internal control logic of
the RPU, such as the con�guration address and data
busses, is fundamental. The \Open Architecture" of
the XC6200 series is an important non-technical fea-
ture, allowing essential access to detailed information
regarding low level programming interface and bit-
stream formats. Since the Flexible URISC machine
must interface directly with the con�guration inter-
face of the RPU, speci�c details regarding this inter-
face must be attainable.

Additionally, the fact that the FastMaptm interface
inherently presents a memory style interface means
only a narrow semantic gap need be bridged in map-
ping the FastMaptm into the Flexible URISC's ad-
dress space. The amount of interfacing logic required
to map the con�guration memory into the overall
memory map of the URISC core, therefore, is minim-
ised. Alternative con�guration interfaces would per-
haps require external address decoding or translation,
increasing the complexity of the processor core. In
total, three conceptually distinct memory interfaces
must be mapped into the memory map of the Flexible
URISC core. System RAM for holding program and
data segments is a basic requirement, derived from
a standard URISC machine. In addition to con�g-
uration memory, it is also necessary to map the state
memory of the user logic resident on the array into the
URISC memory space. Mapping of user logic state
facilitates the use of the Flexible URISC core as an
inter-SLU communications agent.

User state memory is also accessed via the
FastMaptm interface and the act of mapping con�g-
uration memory also maps state memory into the ad-
dress space. Extra measures are necessary, however,
as state memory cannot be accessed directly, in the
same manner as con�guration memory. State memory
is, instead, addressed by horizontal column. Since a
maximum of 32 bits may be accessed and columns
potentially contain 128 bits of state data, a series of
\map" registers de�ne which bits of the array column
are to be masked out. These extra measures could
be implemented in hardware, in the Flexible URISC
datapath. Instead, they are left as a primarily system-
level software task, for reasons discussed in the pro-
gramming environment section. A software solution
also upholds the simplicity and purity of the Flexible

URISC core's implementation.

6 Self Modifying Circuitry

By mapping the host FPGA's con�guration
memory into it's own memory space, the Flexible UR-
ISC gains the interesting attribute of self-reference.
Indeed, any circuitry that takes advantage of the
XC6200 series ability to drive internal array control
logic gains the potential for self reference. Circuitry
exploiting this self-referentiality to drive the internal
FastMaptm control, address and data busses, can be
considered \self-modifying".

6.1 The Self Modi�cation Taboo

Traditional software which has access to its pro-
gram text and data segments possesses an analog-
ous potential for self reference, and hence, self modi-
�cation. In modern software engineering practices,
however, the exploitation of such properties is rare and
taboo. For large software systems, this is a justi�ed
notion as the unruly application of self modi�cation
makes systems particularly di�cult to debug. Cur-
rent generation processor architectures reinforce this
taboo through read only instruction caches. Signi�c-
ant cache penalties await programs which override the
memory protection facilities of modern operating sys-
tems, since modi�ed sections of the text segment in
the instruction cache must be 
ushed.

E�ciency, however, is a primary reason for exploit-
ing self modi�cation. Limited memory, storage, and
processing time in early computer systems justi�ed the
use of self modi�cation to gain increased code 
exib-
ility whilst limiting resource utilisation.

Contemporary virtual circuitry systems �nd them-
selves in an analogous situation to early software sys-
tems. FPGA device densities, although improving, are
still considered limited and con�guration penalties re-
main high. Performance advantages are therefore to
be gained from exploiting self modi�cation as the tech-
nique for altering the con�guration of a resident cir-
cuit. The main bene�t for self modifying circuitry is
the reduced time spent on con�guration. The availab-
ility of partial recon�gurability is important in allow-
ing the self modifying circuit to remain active whilst
part of the datapath is modi�ed. Since older FPGA
architectures, which require full recon�guration of the
entire array, render circuitry inactive during full re-
con�guration, facilitating self modifying circuitry in
these architectures is practically impossible.



Figure 3: XC6216 implementation of Flexible URISC
core

7 Practicable Virtual Circuitry

Increased device level performance in FPGAs has
resulted from advances in fabrication technologies,
combined with partially recon�gurable architectures.
Bottlenecks on the host peripheral bus have become a
primary limitation restricting the deployment of vir-
tual circuitry within general software systems. Most
FPGA development cards interface an FPGA with a
main processor system via the host's PCI bus. Inter-
actions between the FPGA and host must be mediated
against other devices resident on the PCI bus.

The self contained nature of the Flexible URISC
allows peripheral bus bandwidth limitations to be
avoided. As a self-modifying system, the Flexible UR-
ISC has direct, unmediated access to the host FPGA's
FastMaptm programming interface. Program and cir-
cuitry data, stored in on-board SRAM, is directly ac-
cessible to the Flexible URISC via a dedicated, on
board memory bus. The combination of both these
properties within the Flexible URISC core allows for
the high bandwidth transfer of program and circuitry
across the dedicated memory bus and the fast direct
recon�guration of the host FPGA by self-modi�cation.

System Level Integration(SLI) is a promising ap-
proach in combating bandwidth limitation directly.
Here, a con�gurable array and general processor are
tightly integrated on the same die. Application of this
approach is evident in the RAW architecture which

de�nes a tiled processor architecture and tightly in-
tegrated con�gurable array [4]. Combining a static
processor core on the same die as an FPGA represents
a potentially more e�cient solution to the bandwidth
limitation problem.

Since the widespread fabrication and availability of
\single die" systems is unlikely within the near future,
it should be noted that the Flexible URISC is an equit-
able present day prototype of such single die solutions.
Rather than physically integrating both components
on a single die, the Flexible URISC core is tightly in-
tegrated with the con�gurable array by residing on it.
Directly interfacing with the host array's con�gura-
tion interface serves to further tighten the integration.
Experiences and performance results gained from the
Flexible URISC system should be considered charac-
teristic of those to be gained in the next generation of
tightly integrated processor and FPGA systems.

The choice of processor core to be integrated on
the same die as an FPGA highlights another attribute
of the Flexible URISC system. Integrating a complex
processor core on the same die as an FPGA results in
a system which has a traditional separation between
hardware and software. To exploit the custom com-
puting facilities of the integrated FPGA, it remains
necessary to traverse between the notion of software,
de�ned by the instruction set of the integrated pro-
cessor core, to the notion of hardware, de�ned the
custom circuitry implemented on the FPGA. In this
situation, a signi�cant hardware/software divide re-
mains between the integrated processor and con�g-
urable array. As will be seen through the discussion
of the Flexible URISC programming environment, an
important attribute of the URISC system is its ability
to narrow the hardware software divide. The bene�ts
of the integration of a Flexible URISC core remain,
even following the advent of potentially more e�cient
solutions to the problem of bandwidth limitation.

7.1 Prototype Performance Analysis

The successful implementation of early prototypes
of the Flexible URISC system has allowed for some
simple performance analysis. The main aim of this
analysis was to assess the degree to which the Flexible
URISC can exploit its self contained and self modi-
fying nature in accessing the available memory and
con�guration interfaces. Of particular interest is the
bandwidth available between the Flexible URISC and
its program memory. Since all URISC program data
and circuitry resides in on board SRAM, the band-
width available on the dedicated memory interface sets
an upper bounds on the level that the array may be



self modi�ed.

The Flexible URISC was assigned a simple task, de-
signed to reveal the number of instructions executed.
The Flexible URISC was assigned the task of �lling a
bu�er of a known size with a known constant. Start-
ing with the constant c at bu�er position 0, a Flexible
URISC program was coded which repeatedly moved
the constant from position 0 to position n (e�ectively
copying it from position 0 to n). A 16-stage state ma-
chine implements the control logic for the prototype
Flexible URISC. Every move instruction executed by
the Flexible URISC core, therefore, takes 16 clock
cycles, four of which involve transactions with the on
board memory interface.

Observing the number of bu�er cells �lled on a
given execution of the benchmark URISC program
directly corresponds to the number of URISC instruc-
tions executed within the period of execution. Since
the number of memory transactions incurred per in-
struction is also de�ned, executing the benchmark pro-
gram for a known time period reveals the number
of memory transactions completed within that time
period. To observe, experimentally, how the memory
bandwidth varies with time, the benchmark was re-
peatedly executed within a range of times, spanning
from 0 to 55ms. Execution was performed on a Flex-
ible URISC core operating at a modest 8 MHz, al-
though prototype Flexible URISC cores have also been
operational at clock speeds up to 33MHz. The graph
shown in �gure 4 details a smooth linear progression
in the number of instructions executed as the execu-
tion period is extended. Using these �gures, memory
bandwidth exploited by the Flexible URISC core can
be calculated. Table 1 details the bandwidth observed
experimentally at 8MHz and extrapolated to cores op-
erating at 16 and 33MHz.

These �gures are particularly promising in contrast
to reported bandwidths attained when negotiating the
PCI bus. The maximum reported PCI bandwidth
of around 7Mb/s has important consequences on the
feasibility of any traditional software based system,
such as certain styles of the Sea of Accelerators model
of virtual circuitry, attempting to emulate a Flexible
URISC machine. Enhancements to the simplistic, un-
pipelined implementation of the Flexible URISC are
conceivable. Of particular interest are approaches to
addressing the severe under- utilisation of available
memory bandwidth. The prototype, which only issues
four memory transactions per 16 clock cycles, would
be signi�cantly enhanced by the careful application of
pipelining. The bene�ts of increased utilisation of the
memory bus bandwidth must, of course, be weighted
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Figure 4: Performance Results of the Prototype Im-
plementation

Clock Instrs Mem Cycles Bandwidth
Speed per Sec per Sec (Mb/s)

8 MHz 500,000 2,000,000 8
16 MHz 1,000,000 4,000,000 16
32 MHz 2,000,000 8,000,000 32

Table 1: Flexible URISC Memory Bandwidth

against additional array resources consumed by the
pipelined implementation.

As testimony to its lean implementation, the pro-
totype Flexible URISC, as implemented on a Xilinx
XC6216 RPU, occupies 800 function units { approxim-
ately 19% of the available function units of a XC6216.
The same design implemented on the larger XC6264
RPU consumes only 4% of the function unit resources.
Areas of un-utilised function units are available for the
implementation system bus SLUs, provided appropri-
ate routing resources are available. A design heuristic
in the course of implementing the Flexible URISC core
was to exploit chip-length wires before length 16 rout-
ing, length 16 before length 4 and so on. Since system
bus SLUs are more likely to rely on local routing before
chip length routing, the availability of local routing re-
sources allows un-utilised regions of function units to
be more readily exploited.



8 The Flexible URISC Programming
Environment

A suitable programming environment must be
de�ned before the novel technical features of the Flex-
ible URISC may be fully exploited. In de�ning this en-
vironment, the overall system context of the Flexible
URISC must be considered. Since the primary motiv-
ation for the Flexible URISC is to develop a vehicle
for the e�cient implementation of virtual circuitry, a
discussion of the particular model of virtual circuitry
supported by Flexible URISC is warranted.

8.1 System Context

The Flexible URISC has been designed as an
autonomous, stand-alone system. The programming
environment should, however, take into account the
relationship between the Flexible URISC and any host
processing system. This relationship is clari�ed as fol-
lows.

The Flexible URISC's self-contained and self modi-
fying nature allows it to be an autonomous processing
system. The primary system context, an autonomous
Flexible URISC, comprises of a central RPU, upon
which the Flexible URISC resides, combined with
RAM and ROM devices. RAM is primarily used as a
program and data store. The bitstream de�nitions of
SLUs used within the program are also held in system
RAM. A ROM device provides an appropriate boot
con�guration of the Flexible URISC. To facilitate a
stand alone system, the Flexible URISC is capable of
processing immediately at the end of the con�guration
cycle. Non-volatile RAM is a potentially interesting
substitute for a ROM device, upholding the Flexible
nature of the Flexible URISC by allowing further self-
reference and self modi�cation of the boot sequence.

In the traditional approach to virtual circuitry, a
software component executing on the host processor
provides runtime virtual circuitry management. In-
tegrating the Flexible URISC and a general purpose
processor system e�ectively results in the creation of a
closely coupled multiprocessor system. The metaphor
is furthered by exploiting a shared memory interface
to facilitate communication between processors. Not-
ably, the Flexible URISC retains entire responsibil-
ity for management and implementation of the virtual
circuitry model. The complete programming environ-
ment could conceptually, by virtue of its autonomous
nature, be implemented entirely on the Flexible UR-
ISC itself. Integration with a general purpose pro-
cessor provides the possibility of implementing the
programming environment on the general processor.

The facilities of the general purpose processor are suit-
ably attuned to implementing the interactive develop-
ment process.

8.2 The Flexible URISC model of Virtual
Circuitry

Two primary models of virtual circuitry, the Sea
of Accelerators and the Parallel Harness, have been
de�ned in [1]. Both of these systems can be imple-
mented on the Flexible URISC. Indeed, the de�nition
of Sea of Accelerators gives some consideration to the
use of a software agent to transfer data between SLUs.
Results from the discussion of practicable virtual cir-
cuitry, however, suggest the intractability of this tech-
nique, when implemented as an external software sys-
tem.

Rather than simply implementingone of these mod-
els, however, the Flexible URISC provides enough fa-
cilities to consider a third model of virtual circuitry {
the Sequential Algorithmic Model. Contextually, this
model rests between the parallel harness and sea of ac-
celerator models. With the Sea of Accelerators model,
which exploits no routing, to one side and the Paral-
lel Harness model of hard routing on the other, the
Sequential Algorithmic Harness implements e�cient
software routing.

The Sequential Algorithmic model utilises the com-
munications agent abilities of the Flexible URISC to
e�ect processing. The model is sequential as a res-
ult of the serialising e�ect of processing move instruc-
tions within the Flexible URISC core. A Flexible UR-
ISC program de�nes, via a series of move instructions,
the order of transfer of operands between system bus
SLUs. The precise order of system bus transfers can
be explicitly described in a lengthy series of moves.
More attractive, however, is the potential to exploit
existing computational resources residing on the sys-
tem bus to allow an algorithmic de�nition of complex
communication patterns.

8.3 Programming Model

Programming the Flexible URISC in its native in-
struction set is undesirable. Hand construction of
large programs solely with move instructions and ab-
solute addressing as the only addressing mode would
be cumbersome and error prone. Given this, a suit-
able formalism for the expression of a Flexible URISC
program must be selected. Some initial consideration
is given, however, to the overall development and ex-
ecution model of a Flexible URISC program.



The Flexible URISC exploits a series of pre-de�ned
SLUs as elements of execution. This is similar to the
approach taken in DISC and diverges from the run-
time derivation of in-line hardware modules, as sug-
gested for the self-con�guring processor[5]. On the

y derivation of hardware modules incurs signi�cant
runtime penalties and relies on a native instruction
set rich enough to allow traditional software execution
of an equivalent software description of the hardware
module whilst the hardware module is derived.

The Flexible URISC makes a signi�cant depar-
ture from the traditional virtual circuitry execution
model. In traditional systems, processing is performed
by combining periods of traditional software execu-
tion interspersed by periods of hardware custom co-
processing. In contrast, the Flexible URISC makes
insists all computation is performed in custom hard-
ware modules. Whilst this model was not particularly
tractable in previous systems, the technical features
of the Flexible URISC used to support the Sequen-
tial Algorithmic virtual circuitry model increase the
feasibility of hardware execution.

The lack of \on the 
y" SLU derivation requires
the programming environment include facilities for the
construction of the system SLUs. Concern that appro-
priate SLUS may be unde�ned when required for the
performance of a speci�c program task is implies a
fault on the programmers part. A task of the devel-
opment process is to ensure the appropriate hardware
modules are de�ned to support execution.

Since the Flexible URISC is, essentially, a data-

ow machine a primary requirement of the program-
ming formalism is that it adequately capture data-

ow information. The DISC programming environ-
ment consists of a rich set of retargetable C tools. In
this instance, C is a reasonable programming formal-
ism, re
ecting the imperative nature of the DISC core
and traditional instruction set interface. Conceptu-
ally, C may be used as the Flexible URISC program-
ming formalism, yet this requires additional function-
ality on the part of the compiler, for the derivation of a
suitable data
ow between instruction SLUs to imple-
ment the required functionality. An attractive altern-
ative is the use of functional programming languages.
Functional languages express both computation and
data
ow. Furthermore, the use of higher order func-
tions may provide a suitable formalism for expressing
dynamic recon�guration and self modi�cation.

8.4 Narrowing the Hardware Software
Divide

By mapping the con�guration and state memory of
the host FPGA into its own memory space, the Flex-
ible URISC raises an important opportunity to nar-
row the hardware software divide. The Flexible UR-
ISC move instruction is the primary vehicle by which
the hardware software divide is narrowed. The single
move instruction e�ects computation by moving oper-
ands to and from system bus SLUs. The same instruc-
tion also e�ects recon�guration of the host FPGA by
moving con�guration data from system memory to the
con�guration memory which has been mapped into
the Flexible URISC's memory map.

The point to be noted is that the same instruction
is used to both con�gure and compute. The trans-
ition between e�ecting computation and con�guration
is highly transparent { e�ectively being an attribute
only of the source or destination address of the move
instruction. Given a series of Flexible URISC move
instructions, the distinction between instructions for
computation and instructions for con�guration is not
immediately apparent.

As well as bridging the gap between computation
and con�guration, the move instruction narrows the
boundary between hardware and software. Consid-
ering the software tier of a Flexible URISC program
to be the microcode style program de�ning the move-
ment of operands and the hardware tier to be the pro-
cessing of operands by system bus circuitry residing on
the con�gurable array. No processing of any interest
may occur independently, on any single tier. Real-
istic processing, instead, involves using basic move to
transfer operands between tiers. i.e., transferring op-
erands from system RAM to and from state memory of
the host FPGA. The Flexible URISC provides a single
instruction which transparently negotiates the hard-
ware/software and computation/con�guration bound-
aries. E�ectively, the move instruction is a single in-
terface to hardware, software, and dynamic con�gur-
ation.

Reducing the hardware software divide is of interest
for systems involving hardware software co-design.
Systems exploiting virtual circuitry inherently require
hardware software co-design issues be addressed. Nar-
rowing the hardware software boundary is of particu-
lar bene�t in these situations, reducing the focus on
interfacing issues and facilitating a transparent trans-
ition between hardware and software system compon-
ents.



8.5 Static and Dynamic environments

Two styles of Flexible URISC environment are en-
visioned. A compile time system providing a highly
e�cient implementation of a pre-de�ned con�guration
schedule and a dynamic system implementing a prim-
itive operating-system style demand con�guration sys-
tem.

8.5.1 The Static Environment

A compile time system trades performance against

exibility. The costly burden of runtime decision mak-
ing is avoided by extracting a static recon�guration
schedule, at the cost of overall system 
exibility. In-
creased 
exibility makes the dynamic approach more
applicable in a general software environment where no
static recon�guration schedule is available.

Loss of 
exibility in the static environment is o�-
set by increased opportunities to apply a number
of performance enhancing techniques. A novel ap-
proach to recon�guration, for example, is applicable.
Traditional virtual circuitry systems employ distinct
phases of computation and con�guration. Con�gur-
ation phases are immediately followed by computa-
tion phases intended to take maximum advantage of
the newly con�gured circuitry, recouping any recon-
�guration penalty. Notedly, processing must halt for
a signi�cant period whilst con�guration is underway.
Utilising the information contained in the static re-
con�guration schedule, however, allows the advance
determination of con�guration deadlines. This, com-
bined with the Flexible URISC's ability to transpar-
ently mix con�guration and computation instructions
at a very �ne grain, allows the compiler to begin con-
�guration in advance of the execution of dependant
computation instructions. Fine grain intermixing of
con�guration instructions allows a minimum impact
on the level of computation instructions being pro-
cessed. The lack of a static recon�guration schedule in
the dynamic environment restricts the application of
such interleaved con�guration and computation. Any
application of the technique would be analogous to
probabilistic page pre-fetching in virtual memory sys-
tems.

Further, technology speci�c techniques, may be ex-
ploited in the compile-time environment. As discussed
in [2], careful alignment of system bus SLU interfaces
and choice of map register values allows, multiple in-
dependent moves to be made in a single instruction.
Wildcarding may also be exploited to implement mul-
ticasting.

8.5.2 The Dynamic Environment

The dynamic environment, in the model of a prim-
itive operating system, implements two levels of pro-
gramming. A privileged \system program" is charged
with the sole responsibility of implementing demand
dynamic recon�guration of the host FPGA. Dynamic
environment programs express computation data
ow
and contain de�nitions of the appropriate system bus
SLUs to e�ect the de�ned computational data
ow. In
contrast to static environment programs, which con-
tain integrated con�guration, computation and cir-
cuitry de�nitions, no con�guration data
ow is de�ned
in user programs. The system program, instead,
de�nes a general con�guration data
ow for all user
programs.

A dynamic environment compiler supports the use
of a \procedural" interface to access the facilities of
the system program. Upholding the operating system
metaphor, user programs make Flexible URISC \sys-
tem calls" to request, for example, the placement of a
particular system bus SLU. Signalling a return to the
traditional model of con�guration followed by compu-
tation, system calls in the dynamic environment block
the caller. Following a model of co-operative multi-
tasking, blocking system calls allow the system pro-
gram to resume executing, begin the demand paging
process or possibly context switch to an alternative
user program. A pre-emptive multitasking system is
conceivable, but requires modi�cations to the Flexible
URISC core, to introduce timing interrupts.

Additional operating system analogues that may
be applied in the dynamic environment include page-
faulting and memory protection. Indeed, protection
issues are of particular interest to support the enforce-
ment of the distinct privileged and user modes of ex-
ecution. Examples of privileged resources include the
con�guration interface which, in the dynamic environ-
ment, should only be accessed by the system program.
Even more compelling is the need to protect memory
mapped non-volatile storage, as introduced in the sys-
tem context discussion, to avoid corruption of the boot
image by unprivileged user programs.

9 Conclusions and Future Work

Literature has shown that traditional performance
gains in virtual circuitry systems are waning in the
light of signi�cant increases in the raw processing
power of general purpose processors. It is the be-
lief of the author, however, that virtual circuitry still
has a signi�cant contribution to make to the general



�eld of computing. The advent of \Systems on Silic-
on" is perceived as a particularly valid and promising
new environment allowing virtual circuitry to be suc-
cessfully integrated with a general software system,
without su�ering adverse technical bandwidth limita-
tions that have choked existing systems.

The Flexible URISC has been introduced in this pa-
per as a combined computation, communication and
con�guration agent. By exploiting its ability for self-
reference and self-modi�cation, the Flexible URISC
represents a practical midpoint between existing vir-
tual circuitry systems and impending future systems
exploiting SLI. A basic analysis of the prototype im-
plementation has shown the Flexible URISC has the
potential to combat the signi�cant technical limit-
ations of the existing virtual circuitry environment.
This result provides some initial evidence of advant-
ages to be gained by systems exploiting SLI.

Future plans for the Flexible URISC involve the de-
velopment of its programming environment. This fa-
cilitates the use of the Flexible URISC as a vehicle for
exploring the application hardware/software co-design
when, via the Flexible URISC, the boundaries between
hardware/software are minimised. Dynamic Protocol
Construction, within the �eld of active networking, is
also a planned application area. Here, the aim is to
exploit the autonomous nature of the Flexible UR-
ISC to develop a stand-alone protocol processing net-
work agent. The Flexible URISC is combined with a
memorymapped network interface to provide a frame-
work for supporting the dynamic execution of dynam-
ically de�ned communication protocols. Speci�cally,
dynamic protocols are de�ned and implemented as
fragments of Flexible URISC programs - essentially
a \circlet", the virtual circuitry equivalent of an ap-
plet. Utilising the memory mapped network interface
of the supporting Flexible URISC system, protocol
processing circlets may then be deployed into the act-
ive network fabric which is, itself facilitated by the
execution of \system" protocol circlets on the same
Flexible URISC infrastructure.
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