
BERICHT NR. 1996/11

  INTEGRATED  SOFTWARE / HARDWARE  DEVELOPMENT  SYSTEM

Walter H. Burkhardt and Stefan Rust
Universitaet Stuttgart

Institut fuer Informatik
Breitwiesenstr. 20

D-70565  Stuttgart, Germany
e-mail: burkhardt@informatik.uni-stuttgart.de

Fax: 1-49-711-781-6370

Abstract:

     The usual design and development method in systems architecture of separ-
ate portions of soft- and hardware components introduces high inefficiencies,
due to redundancies and seldom used functions on the wrong  levels of iplem-
entation. A better approach offers a methodology  for an integrated software,
firmware, and hardware design. Required are, however, immense computer sup-
port and graphical capabilities. A system of this kind is especially valuable for
development under constraints of performance, cost, time, space, or other limita-
tions. We present such a system and show its capabilities in the development of
a defect-free sorter systems module.

Keywords : Application-Specific-Architecture, Integrated design and develop-
mentsystems, CAD, ASIC, Performance.

1. Introduction.

     The economies of integrated circuits permit realization of the required func-
tionality by specialized digital systems [Amm87], where in the future up to one
billion circuits per chip can be expected [Hoe78]. Applications exist e.g. in Com-
munications and Signal processing, protocol converters, speech recognition and
filter functions, Autoelectronics, control of brakes and ignition, Instrumentation,
control of the sensors, Picture processing, pattern recognition, object tracking,
and contrast improvement. These applications appear especially in aerospace
systems, machine control, and home electronics, etc. Complicated design
requirements require most often a compact realization of the steeringand control
devices as embedded systems [Axf89, Jun88] in systems on silicon.

     Different possibilities exist for the realization of such embedded systems by
utilization of existing processors with programming of the sytems functions or by
special hardware designs [HNS86]. The first approach has the advantage of fast
realizability of the components of the hardware and ease of modification by ex-
changing the software components. Disadvantages are the relatively high sys-
tem costs in high volume, low performance, and non-optimal adaptatation to the

1



problem. The second approach divides into special processors with micropro-
grammed control and into optimized processors. The first case has the ad-
vantage of high systems performance, but with expensive design and lack of
adaptability. The second approach (ASICS) can show optimized functionality
and hardwired control (RISC) or microprogrammed control (CISC) and software
components optimized for the task. Here, high systems performance can be ob-
tained with well-fitted functionality and flexibility for modification. The design of
the processor and the definition of the software/ hardware-interface turns out to
be expensive. The present system is meant to help with this problem. The
project grew out from the necessity of integrating connection networks in
multiprocessor systems, similar to [DGKL87], but for a crossbar conneted one.
As computers with ever higher performance need special hardware elements, e.
g. [ES90], they become then application oriented systems with less usability in
other areas.

     The effort for the development of solutions to problems in the architecture of
application specific integrated circuits (ASICS) increases considerably with the
complexity of the functions to be implemented. A method for the design,
development, and test is needed with CAD-tools for the support. A preliminary
investigation of the requirements has shown that a combined architecture of
components in software and in hardware has to be supported for an efficient
realization by integrated systems.

     A model for integrated specification was created for the specification of such
software/hardware systems in contrast to other approaches to this problem. It
applies parallel and communicating hierarchical processes for the description on
different levels of specification with automatic and semi-automatic transforma-
tions between them.

2. Design of Integrated Software/Hardware Systems.

2.1. Available systems and requirements.

     Several CAD-software packages are available for different aspects of the
hardware design tasks, e.g. placement and routing [BLM86]. Cell generators
permit creation of parametrized circuits elements as registers, memories, and
functional units [Bur88]. PLA and control circuit generators allow automatic real-
ization of even complicated control circuitry [e.g. MLB88].

     The emphasis in systems design  has moved so from the design of the layout
to the design of the systems. The design of the architecture requires still the
highest effort for the chip functions to be implemented [Sch89].

     Two existing systems for the synthesis give a first approach to the automation
of the architectural design phase [CR89, Sch89]. Another system permits the de-
finition of a hardware structure for the execution of ADA programs [JRS89].

1



These systems show, however, a relative inflexibility in regard to the arch-
itecture and cannot deliver the quality of a hand design for complicated circuitry
[Mar89]. Interactive control of the synthesis is needed for much better integration
and the applicability of the architectural synthesis in extended designs.

     The software portion of a complicated system presents another problem. The
implementation of extensive tasks purely in hardware turns out most often to be
rather inefficient. The reason is that the requirements for hardware and espec-
ially for systems control grow immensely, and the components of the hardware
cannot be utilized sufficiently. A hierarchical implementation of the control
circuitry offers much better efficiency and structure.  The highest levels of the
hierarchy should reside as control programs in a memory. Structures of process-
ors and control circuits appear so with an optimal instruction code of the solution
of the problem, and optimal distribution of the software and hardware compon-
ents [HR88].

     Demands increase for the development system in the design of combined
software/hardware systems. So, methods are required from software engineer-
ing.

     The possibility of behavioral descriptions offers high potential for the design,
development, and test of integrated circuits, using programming languages.

2.2. Solution proposition.

     A systematic transfomation of the behavioral description into an architectural
description serves as the basis for the proposed solution here under consider-
ation of the division into software and hardware components. The user will have
a hierarchy of algorithmic and rule-based design tool modules for the analysis,
transformation, and synthesis of designs. The graphical design environment
supports the user at the definition of the behavioral description of the design. It
contains an integrated synthesis systems module for the development of the
hardware architecture from different hierarchical levels, see Figure 1.

3. Design Steps.

     Several steps can be distinguished during the design of a complicated
software/hardware system: definition of the functionality of the  total system, ob-
servation of realtime constraints, division of the funtions into software and hard-
ware components, definition of the software/hardware interface, design of the
hardware, firmware, and software components, and system integration and test.
Figures 2 and 3 show two types of developmental venue: development with
prototype verification, and development with architectural simulation.

1



Figure 1: The developmental task.

Figure 2: Systems development           Figure 3: Steps for systems
with prototype verification.                 development with architecture

                               simulation

     The design of complicated systems forces the designer into a structured
approach with hierarchies and modularity, at best with a meet-in-the-middle ap-
proach [DLM88], followed by verification and validation. Different phases can be
distinguished: study, specification, system design, implementation, integration
and test, and production. Iterative cycles appear for all of these.

The present development system has at its heart a database in a specially de-
signed language SIL for a design. SIL is an intermediate system level
description language, comparable to controlflow/dataflow languages in other
high level synthesis systems, but with high graphical capabilities. The user can
define initially a system in several ways: by a functional or a structural
description with a graphical PMS notation; by the RT-SA/SD method on the
register transfer level; or by DACAPO-II [DAC85]; or C-language algorithms, and
by combinations of these. All definitions are then compiled to SIL, see Fig. 4.

1



       Figure 4: The system design level structure

     A design in the SIL database can be optimized or parallelized by trans-
formations as to the control and dataflow by tools as individual modules.  Also
the design can be transformed from here to the architectural level by translating
the SIL description to a software assembler [Bur77]), to firmware, and to
hardware by synthesis tool modules. The design can also be manipulated and
modified on the architectural level.

          Figure 5: Tools on the architectural level.

     Once a design is complete, it can be transformed to the layout level by a
generator. Additional modifications can be applied here again, see Fig. 6.

1



     As the design process works iteratively, the different levels can be followed
automatically and a better adaptation to the requested tasks achieved.

                    Figure 6: Tools on the layout level.

4. The Concept of the Design Method.

     The requirement for explorative designs of integrated software/hardware-sys-
tems is supported by three application methods: interactive, guided, or autom-
ated methods. Once a design has taken shape, it can be modified interactively
with the creation of elements on the design level for concern. Tools exist for the
analysis, transformation and synthesis of elements, and the results are pro-
cessed for graphical representation. The combination of the support functions
permits automatic generation of elements for specific applications.  The global
flow of control can be defined by a rule-based program.

     Different degrees of automation are thus achieveable. The simulator gen-
erator module can produce automatically a model for the KARL-II simulator.  The
expertise in the expert module for the design is not predefined rigidly, which
would then be restricted, but can be formulated by the designer. The expertise
can be stored, documented, and transferred to other designs. Expert knowledge
from other designs can be called upon within the system. An adaptable concept
for the automation of systems designs is obtained for different requirements. For
the stucture of the design system, see Fig. 7.

 
                                          Fig. 7: Structure of the development system.

1



4.1 Design Levels.

     Several levels can be employed in the design of complex systems: the
systems or behavioral level for the specification of a software/hardware-system;
the architectural level for the  design of the systems modules; the floorplan/ lay-
out level  for the estimation for the floorplan and the detailed chip design. A  de-
sign can be verified as to its performance by the automatic generation of sim-
ulation models for DACAPO-II (behavioral level) [DAC85], KARL-III (RT-level)
[HLW86], and RELAX (layout level).

5. Implementation of the System.

     The system has been implemented in a hierarchy of modules that can be
called-up from an overall mon-itor. The idea here is that additions, changes and
modifications to the system can be made any time, especially with respect to
further automation of the design process, without affecting the operability of the
system.

6. Sample Application: Sorterchip.

     The design of a sorterchip for picture processing was chosen for a model ap-
plication. The following aspects were of special importance during this develop-
ment:

     1. The development and presentation of the transformations for the
specifications development and planning of the system test on the behavioral
level. A powerful algorithm was constructed with these transformations that is
especially fitted for a chip implementation, due to the regular structure of the
sorter,

     2. The application of the editors for the interactive graphical definition of the
specifications;

     3. Representation of different software/hardware implementations and their
statistical evaluation, including estimation of the floorplan requirements;

     4. Application of the optimizer and synthesis tools for a processor element
and omparison to the hand design;

     5.  Interactive design support for the architectural and logic design and the
verification by the architecture simulators;

     6. Application of a rule-based design language for a  specific user appl-
iplication and automation on the architectural level.

1



6.1 Initial Specification.

     A problem-oriented definition in C of the sorting algorithm did serve as the
starting point for a hand design as the same basis as for the development
system. The transformations simplified the complex expressions with the add-
ition of new variables. Backtracking had to be used by the optimizer for
simplification for an implementation by counters and MS-registers. For-loops
offer two possibilities for parallizing: loops without data dependencies are
unrolled, and the assignments of some loop positions put into a procedure on a
lower level which permits sliceable structures.

6.2 Statistical evaluation and selection of the architecture.

     The statistical evaluation of the behavioral specification results in information
for the selection of the target architecture. The execution time for a solution in
software came to 180 us for sorting, or for a pixel rate of only 6 kHz. Required
was a pixel rate of 4 MHz, or a speedup factor needed of Shw /Ssw = 700. The
technological speedup factor Stech for the transition from software to hardware
runs up to 2us/20ns = 100, because an assignment in the behavioral description
needs about 2 us, but on the Gate Forest level about 20 ns. This means, a
parallization factor of at least 7 is required. Possible parallelization is solely
limited by the available chip area. The floorplan estimator tool module has
allocated some 30% of chip area for the control logic, the registers and drivers.
One processor element uses about 10% of the area, so the 7 processor
elements became feasible. The time analyzer module for the different sorter
functions in use gave no specific peak, all of them are in the 20%-30% range of
the total time requirement. This means that all sorting functions should be im-
plemented as hardware elements, no firmware or software used [BM78].

6.3 Evaluation of different implementations.

     The pure software solution needs no additional chip area, but requires 180 us
for sorting. The use of one sorter slice reduces the sorting time to 28 us, but
needs 4 mm 2 chip area. Seven sort slices can be combined unto one Gate For-
est chip with 28 mm 2 area and 4 us for sorting time. An implementation of the
sorter as a coprocessor reduces the time requirement to .25us, but needs 40 mm
square chip area, see Figure 8. The execution time requirements T by the area
occupied A follow  a falling log-function with 99.97% correlation: T = 50.25 +
14.04 * ln A, see Fig. 9.

1



Fig. 8: Trade-off Hardwre/Software.

             Fig. 9: Execution time by chip area.

The speedup S increases exponenially as a function of the area A with cor-
relation of 96.82% by the function: S = 1.66 * exp(0.14 * A), see Fig. 10. This
means, that a trade-off in chip area has the capability of an exponential increase
in computational power.

           Fig. 10: Speedup by chip area

1



 6.4 Optimizer Performance.

     The optimizing tool module from the system has reduced the number of the
sorter elements from originally 970 to 540. This gives an improvement of 44%.

6.5 Development time comparison.

     The design of the sorter architecture by hand had required 17 man weeks.
But with this development system, it was reduced to 6 man weeks, or the
significant improvement of 65% with no discernible decrease in the performance
of the obtained product.

6.6 Chip implementation.

     The above design of the sorter chip was manufactured unchanged in the
ACMOS 2 Gate Forest technology [BHK88]. The design uses 18000 active
ransistors, enclosed in a pingrid case, and clocks at 5 MHz, see Fig. 11. It op-
erates defectfree and without any flaws or problems.

               Fig.11: Sorter-Chip.

Bibliography.

[Amm87]   P. Ammon: ASIC - Was, wie, wann. Elektronik, Nr. 3, p. 141,(1987).

[Axf89]   T. Axford: Concurrent Programming Wiley 1989.

1



[BHK88]   M. Beunder, B. Hoefflinger, and J. Kernhof: New directions in semi-
custom arrays. IEEE J. of Solid-State Circuits, Vol 23, pp. 728-735,(1988).

[BLM86]   U. G. Baitinger, et. al.: Das Forschungs- und Entwicklungsprojekt
MEGA. Elektronik, Nr. 2, p. 61-64, December 1986.

[BM78]    W.  H.  Burkhardt  and H. E. Maier: MICOS: A microprogrammed hier-
archical operating system nucleus and its performance comparison. Proc. 11th
Annual Microprogramming Workshop 1978, p. 33.

[Bur77]   W. H. Burkhardt: Universal Micocomputer Systems Software. Proc. Fall
Compcon 1977, p. 209-211.

[Bur88]   M. R. Burich: Design of Module Generators and Silicon Compilers. In
Silicon Compilation, North Holland, 1988.

[CR98]    R.  Camposano  and W. Rosenstiel: Synthesising Circuits from behav-
ioral Descriptions. IEEE Trans. on Com-puter-Aid-Design, Vol. CAD-8,(2,1989),
2.

[DAC85]   DACAPO-II,  Version  3.0, User Manual, Dosis GmbH, Dortmund,
1985.

[DGK87]   J. Dickey, A. Gottlieb, R. Kenner and Y-S.Liu: Designing  VLSI net-
work nodes to reduce memory traffic in a shared memory parallel computer.
Circuits, Systems and Sig-nal Processing 6, 217-38 (1987).

[DLM88]   P.  Dutzy  et.  al.:  Vom Handentwurf zur Struktursynthese. Elektronik,
VOl. 12, (6,1988), 114.

[ES90]    Evans & Sutherland: "ESV - Series", 1990.

[HLW86]   R. W. Hartenstein et. al.: KARL-III Language Reference Manual,
Universitõt Kaiserslautern, Fachbereich Infor-matik, 1986.

[HNS86]   E.  Hoerbst  et.  al.: VENUS: Entwurf von VLSI-Schaltungen, Springer
1986.

[Hoe78]   B Hoefflinger (Ed.): Großintegration, Oldenbourg 1978.

[HR88]    R. W. Hartenstein and W. Ryba: Parti-tionisierungsschemata für Rech-
nerstrukturen. In Design Methodologies für VLSI and Computer Architectures
North Hol-land 1988.

[RS89]    JRS:  Integrated  Design  Automation System (IDAS) SIG-MICRO 21,
(1989), 11-17.

1



[Jun88]   T.  Juntunen: Real-Time Structured Analysis in System Level Design of
Embedded ASICs. In Microprocessing and Microprogramming, 24,(1988), 449-
454.

[Mar89]   P. Marwedel: Improving the Performance of High-Level Synthesis. In
Microprocessing and Microprogramming, 27,(1989), 381-387.

[MLB88)   H. Mahler et. al.: Processor Control Part Synthesis Using Effective
Partitioning Algorithms. In Microprocessing and Microprogramming, 23,(1988).

[Sch89]   D.  Schmid: Systemsynthese. In Proc. Tagung Mikroelektronik Stuttgart
1989 p. 9-15.

1



1


