
LIDEX Reference Manual �Jos�e Eduardo MoreiraWilson Vicente RuggieroDepartamento de Engenharia de Eletricidade, Escola Polit�ecnica daUniversidade de S~ao Paulo, BrasilCenter for Supercomputing Research and DevelopmentUniversity of Illinois at Urbana-Champaign, USAFebruary 1990CSRD Report No. 973AbstractThis is the reference manual for the LIDEX hardware description language.The constructs of the language are syntactically de�ned using the YACC nota-tion, and an explanation of the semantics is given in natural language. Currentlimitations of the present implementation are discussed.
�This work was supported in part by the Interamerican Development Bank/University of S~ao Pauloproject, and the U. S. Department of Energy under Grant No. DE{FG02{85ER25001. Jos�e E. Moreirais with Laborat�orio de Sistemas Integr�aveis, and Wilson V. Ruggiero is with Laborat�orio de SistemasDigitais 1

Contents1 Introduction 22 Basics 33 The Language 44 Current Limitations 391 IntroductionLIDEX is a powerful hardware description language centered on the RT level, but withcapabilities for e�ciently covering of the ISP and Switching levels. The currently availablesimulator generator implements the full language as described in this manual, allowingthe simulation of complex systems.The description of a digital systems spans over three di�erent design axis: the structural,the behavioral, and the morphological. Some languages do allow description in all threeaxis, but most hardware description languages emphasize one or two of the axis [2, 5].LIDEX is particularly strong at the behavioral axis, and very good at the structuralaxis. Its descriptions power in the morphological axis, however, is very limited, allowingthe description of topological features, but not geometrical ones. The basic structuralelements of a system described in LIDEX are the two type of carriers: registers (memorycarriers) and busses (memoryless carriers) [1]. These basic elements are used for buildingup modules, and modules in turn can be used to build more complex modules, until wehave the complete system. Besides its structure, each module also has an algorithmicdescription of its behavior. The syntax and semantics of LIDEX are based in a structuredmodel of digital systems which is described in a related document [8], and the reader issuggested to read this document in order to better understand some characteristics ofthe language.We will start our description of the LIDEX language by some very basic items used towrite the descriptions of digital systems. We will the proceed in a top-down approach,describing simultaneously both the syntax and the semantics of the language.2

2 BasicsWe will describe the syntax of LIDEX using the notation of YACC [4]. This is more thanreasonable, since the simulator for LIDEX was written with YACC, and the de�nitionspresented here are the actual inputs to YACC, so there is no danger of disagreementbetween the language de�nition and the implementation.A description in LIDEX is built up by atoms, or tokens as they are known in compilerterminology. The tokens for LIDEX are:system module unit structurealias connection initialize behaviormod var onebus zerobusof phase cycle constfor to do begin; , . :() []| := = � >== <> > <>= <= + �or xor and notshr shl * /% nop stop dumpend identi�er integer stringAll the tokens, except for identi�er, integer and string are represented in the descriptiontext as a string of characters, with exactly the same characters as in the tokens above;these strings are known as keywords.An identi�er is a string of no more than 15 characters, which may be letters and/ornumbers, starting with a letter, and not equal to any keyword.An integer is an unsigned integer number expressed either in decimal notation (only digits0 to 9), or in hexadecimal notation (digits 0 to 9 and A to F) preceded by a `$' character.An string is any sequence of characters enclosed by double quote marks. Example: \THISIS A STRING".LIDEX is a case insensitive language, which means that an upper case letter is exactlyequivalent to its lower case correspondent. The e�ect is that of transforming all uppercase letters into lower case before processing the description.3

3 The LanguageWe will present the syntax and semantics of the language constructs in a \natural" orderof de�nition. Literals are represented by a sequence of characters enclosed by doublequote marks. In the end of the reference manual there is an alphabetic index of thelanguage constructs, with the page numbers where the de�nition for each one is found.For examples of utilization of LIDEX the reader is recommended to read the document\LIDEX Tutorial" [7].

4

de�nition: systemsyntax:system : "system" identifier ";"systemconstclauseunitmodulelist"end"".";unitmodulelist : unitmodule| unitmodulelist unitmodule;unitmodule : unit| module;semantics: A digital system is built up of modules. A module is a structural member,and one or more modules can be used to build more complex modules, and so on untilthe last module in the description, which must be called \main" and which represents thefull system. A digital system description may also contain functional units. A unit is nota structural member, but it can be viewed as a combinational circuit which transformsinput values into an output value which is solely dependent on the input values. Unitsare used for describing behaviors of modules. The systemconstclause construct is usedto de�ne system-wise constants.
5

de�nition: system constantssyntax:systemconstclause : "const"systemconstlist"end"";"| empty;systemconstlist : systemconst| systemconstlist "," systemconst;systemconst : identifier"."identifier"="integer| identifier"="integer;semantics: In the system constant declaration clause, names are associated with integervalues. Whenever a constant name is referenced, the reference is substituted for theassociated integer. A name associated to an integer value can appear anywhere an integercan appear, inside the scope for the name. Two types of constants can be declared inthe system constant declaration clause:1. system-valid constant { declared as just one identi�er, which has as its scope thetext that goes from the declaration of the constant until the end of the system;2. module-valid constant { declared as two identi�ers separated by a dot, the �rstidenti�er must be the name of a module inside the system, and the second identi�eris the name of a constant for this module (its scope is the whole module).6

de�nition: modulesyntax:module : "module" identifier"(" connectparamlist ")"";"constclausestructureclausealiasclauseconnectionclauseinitializeclausebehaviorclause"end"";";semantics: Each module has a name associated to it, identi�er, and this name is usedwhen referencing to the module. If structural elements of a module will be connectedto elements of another module, then a list of these elements must appear between theparentheses right after the module name (connectparamlist). Besides this list, a moduledescription is built up of a� constclause: declaration of constants internal to the module;� structureclause: declaration of the structural elements that compose the module;� aliasclause: declaration of aliases for the structural elements of the module;� connectionclause: declaration of connections between structural elements of themodule;� initializeclause: declaration of initial values for the structural elements of the mod-ule;� behaviorclause: algorithmic description of the behavior of the module.7

de�nition: connection parameterssyntax:connectparamlist : connectparam| connectparamlist "," connectparam| empty;connectparam : identifier;semantics: The names of all elements of this module that will be used for connectionwith elements of other modules must be declared. The order in which the elements arelisted is not important.

8

de�nition: constant declaration clausesyntax:constclause : "const"constdecllist"end"";"| empty;constdecllist : constdecl| constdecllist","constdecl;constdecl : identifier"="integer;semantics: In the constant declaration clause of a module, names are associated withinteger values. Whenever a constant name is referenced, the reference is substituted forthe associated integer. A name associated to an integer value can appear anywhere aninteger can appear, inside the scope for the name, which ranges from immediately afterits declaration until the end of the module. The constant declaration clause is optional(it may be empty).
9

de�nition: structure declaration clausesyntax:structureclause : "structure"structure"end"";"| empty;structure : modstructurevarstructurezerobusstructureonebusstructure;modstructure : "mod" modstrelemlist ";"| empty;varstructure : "var" varstrelemlist ";"| empty;zerobusstructure : "zerobus" zerobusstrelemlist ";"| empty;onebusstructure : "onebus" onebusstrelemlist ";"| empty;semantics: The structural elements that compose a module can be of four di�erent types(notice there is a proper order of declaration):1. type mod: other modules, previously (in the lexicographic order of the description)declared;2. type var: memory carriers, i.e. registers;10

3. type zerobus: memoryless carriers, i.e. busses, which have a default value of zeroin their lines;4. type onebus: memoryless carriers, i.e. busses, which have a default value of one intheir lines.Each element must have a name di�erent from the name of any other element of thismodule, from any system-wise or module-wise constant, and also di�erent from any unitof the description (this is to ensure that a name appearing in an expression can beimmediately identi�ed in its meaning).

11

de�nition: module-type elements declarationsyntax:modstrelemlist : modstrelem| modstrelemlist "," modstrelem;modstrelem : identifierarrayclause"of" identifier;semantics: The list of module-type structural elements is made of individual declarationsin which the name of the element (�rst identi�er) is declared, then the array range, ifthe element is of type array, is speci�ed (arrayclause) and then the module which is thebasic type of this element is declared (identi�er following \of"). This (basic type) modulemust be previously (in the lexicographic order of the description) declared.

12

de�nition: register-type element declarationsyntax:varstrelemlist : varstrelem| varstrelemlist "," varstrelem;varstrelem : identifierarrayclausebitfield;semantics: The list of register-type structural elements is made of individual declarationsin which the name of the element (identi�er) is declared, then the array range, if theelement is of type array, is speci�ed (arrayclause) and then the bit�eld, which speci�esthe �rst and last bit of the register. The �rst and last bits of a register must obey thefollowing restrictions:1. the �rst bit must be less than or equal to the last bit;2. both �rst and last bits must be between 0 and an implementation de�ned constantMAXBITS.If no bits are speci�ed in the bit�eld, then both �rst and last bits are assumed to be 0.
13

de�nition: bus-type element declarationsyntax:zerobusstrelemlist : zerobusstrelem| zerobusstrelemlist "," zerobusstrelem;zerobusstrelem : identifierarrayclausebitfield;onebusstrelemlist : onebusstrelem| onebusstrelemlist "," onebusstrelem;onebusstrelem : identifierarrayclausebitfield;semantics: The lists of bus-type structural elements is made of individual declarationsin which the name of the element (identi�er) is declared, then the array range, if theelement is of type array, is speci�ed (arrayclause) and then the bit�eld, which speci�esthe �rst and last bit of the bus. The �rst and last bits of a bus must obey the followingrestrictions:1. the �rst bit must be less than or equal to the last bit;2. both �rst and last bits must be between 0 and an implementation de�ned constantMAXBITS.If no bits are speci�ed in the bit�eld, then both �rst and last bits are assumed to be 0.14

de�nition: array speci�cationsyntax:arrayclause : "("integer":"integer")"| empty;semantics: The �rst and second integers of an arrayclause, specify the lower and upperbounds of the array being declared, respectively. The lower and upper bounds of thearray must obey the following rules:1. the lower bound must be less than or equal to the upper bound;2. both the lower and upper bound must be between 0 and an implementation de�nedconstant MAXARRAY.If the arrayclause is empty, then the element is not of array-type.
15

de�nition: bit�eld speci�cationsyntax:bitfield : "|" integer "|"| "|" integer ":" integer "|"| empty;semantics: In the �rst case, when only one integer is speci�ed, then both the �rst andlast bits are assumed to be this same integer. When two integers are speci�ed (secondcase), the �rst one is taken as the �rst bit, and the second one is taken as the last bit.A bit�eld may be empty.

16

de�nition: alias clausesyntax:aliasclause : "alias"alias"end"";"| empty;alias : aliasexpr| alias "," aliasexpr;aliasexpr : aliasident"="aliasident;aliasident : identifierbitfield;semantics: The alias clause declares new (aliases) names that are synonyms to carriersor part of carriers. Aliases may be declared only for simple (non-array) registers andbusses. The aliases names must be di�erent from any element name, and the scope ofan alias goes from the end of the initialize clause to the end of the module. Each alias isdeclared by an expression of the formalias name = real carrier namewith a possible bit�eld appended to each name. The bit�eld appended to the alias namespeci�es the �rst and last bit of the alias. The bit�eld appended to the real carrier namespeci�es the �rst and last bits of a part of the carrier, which corresponds to the �rstand last bits of the aliases. Whenever the alias name is used inside its legal scope, thereference to the alias is substituted for a corresponding reference to the real carrier. Thebit-width for the alias and the original carrier (or part of it) must be the same.17

de�nition: connection clausesyntax:connectionclause : "connection"connection"end"";"| empty;connection : connectionexpr| connection "," connectionexpr;connectionexpr : compident "=" compident| "for" identifier ":=" integer "to" integer "do""begin"connection"end";semantics: The connectionclause is a list of connection statements that connect twocarriers (registers or busses). The carriers must be either non-array or a particularelement of an array, and only carriers of the same type (var-var, onebus-onebus, zerobus-zerobus) can be connected, and only full carriers (not parts of a carrier) can be connected.Loops of the for-type, in which the control variable ranges from the �rst integer to thesecond integer in increments of 1, can be used to describe networks of connection.
18

de�nition: connection elementsyntax:compident : connidentifier| connidentifier"."connidentifier;connidentifier : identifier| identifier"("exprsim")";semantics: compident speci�es a carrier (register or bus) to be connected to anothercarrier. The carrier can be either an element of the module, in which case it can bespeci�ed by only one connidenti�er, or it can be an element of a module-type element ofthe module, in which case two connidenti�ers separated by a period are used, the �rstone to identify the module-type element and the other to identify the carrier inside thismodule-type element. If either the module-type element or the carrier are of array-type,then it is necessary to specify a particular element of the array through an exprsim, aexpression that must evaluate to a valid index of the array.
19

de�nition: expression used in connectionssyntax:exprsim : unsgnexprsim| "+" unsgnexprsim| "-" unsgnexprsim;unsgnexprsim : term| unsgnexprsim "+" term| unsgnexprsim "-" term;term : factor| term "*" factor| term "/" factor| term "%" factor;factor : integer| identifier| "(" expresim ")";semantics: The expression used to calculate an array index in a connection is verysimple, and consists only of operators, integer and identi�ers, and the identi�ers mustcorrespond to the control variables of whatever for-loop the expression is inside. Theorder of precedence, from highest to lowest, of the operators is the following:1. �rst, what is inside parentheses is evaluated;2. binary operators "*", "/" and "came next;3. binary "+" and "-" are lower precedence operators;4. unary "+" and "-" have the lowest precedence (be careful);When there is more than one operator of equal precedence to be evaluated, the evaluationtakes place from left to right. 20

de�nition: initialize clausesyntax:initializeclause : "initialize" initialize "end" ";"| empty;initialize : initializationlist;initializationlist : initialization| initializationlist "," initialization;initialization : initvarident ":=" integer;initvarident : identifierinitarrayrestr;initarrayrestr : "("integer")"| empty;semantics: The initialization clause is used to set initial value to registers (and onlyregisters) of a module, before the the start of the algorithm that describes the behaviorof the module. If a register is of the array-type, the a particular element of the arraymust be speci�ed with initarrayrestr.
21

de�nition: behavior clausesyntax:behaviorclause : "behavior"cyclespecbehavior"end"";"| empty;cyclespec : "(""cycle"integer")"| empty;behavior : commandlist;commandlist : command| commandlist ";" command;semantics: The behavior of a module is described through an algorithm composed bya list of commands. Each command corresponds to one step of the algorithm, and eachstep is executed either in one machine cycle or in one clock cycle (see the de�nition ofcommand. The cyclespec is used to specify the number of clock cycles in one machinecycle of the module, if it is empty then the machine cycle is taken to be equal to theclock cycle (equivalent to declaring \(cycle 1)").
22

de�nition: commandsyntax:command : label":"phasespecsimplcommandlist;simplcommandlist : simplcommand| simplcommandlist "," simplcommand;label : identifier| empty;phasespec : "phase" integer ":" ":"| empty;semantics: Each command, which corresponds to one step in the algorithmic descriptionof the behavior of a module, may be preceded by a label. The label is a name that identi�esthe command, and it is used for referencing the command in goto-type commands. Anycommand can have a label, so that labels may be added for clarity. No two commandscan have the same label, and the scope of a label is the whole behavior clause in whichit is declared.A command is built up of one or more simple commands, which are all executed inparallel in the same step of the algorithm. The step may be executed in one machinecycle, if phasespec is empty, or in one clock cycle otherwise. The integer in phasespec hasno use except to add clarity to the description.If the algorithm executes a step in one clock cycle, and then moves to a step that is tobe executed in one machine cycle, the execution of the later step does not start until thesystem reaches a clock cycle that corresponds to the beginning of a machine cycle for themodule. 23

de�nition: simple commandsyntax:simplcommand : varident":="expression| busident"="expression| gotocommand| stopcommand| nopcommand| dumpcommand| "("simplcommandlist")"condition;condition : "[" expression "]";semantics: A simple command can be either one of six elementary operations, or a list ofsimple commands enclosed in parentheses and followed by a condition. If the expressionin the condition evaluates to TRUE (a value di�erent of 0), then all the simple commandsin the list are executed. If the expression in the condition evaluates to FALSE (a valueequal to 0), then the the whole list is ignored. The six elementary operations that canbe performed in a simple command are:1. assignment of the value of an expression to a register-type carrier (varident);2. assignment of the value of an expression to a bus-type carrier (busident);3. goto (jump) to a command, identi�ed through its label (gotocommand);4. no-operation action, i.e. do nothing (nopcommand);5. show the contents of a carrier, an array of carriers, or all the carrier in a module-typeelement of the module (dumpcommand);24

6. stop the simulation (stopcommand).The last two operations are not really used to describe the system, but rather to controlthe simulation and the output produced during it.

25

de�nition: stop commandsyntax:stopcommand : "stop";semantics: When a stop command is executed, the simulation for the whole systemterminates. The stop command is executed at the end of the machine or clock cycle(depending on the type of command).

26

de�nition: nop commandsyntax:nopcommand : "nop";semantics: A nop command does nothing, it can be used to specify that during a cycle(machine or clock), nothing is to be executed.

27

de�nition: dump commandsyntax:dumpcommand : "dump" "(" identifier arrayrange ")";arrayrange : "(" integer ":" integer ")"| "(" integer ")"| empty;semantics: The dump command, when executed, generates a listing of the values ofthe speci�ed carriers. If the identi�er is a module-type element of the module, then allcarriers of the speci�ed element (including those in module-type elements of the latter)are listed. If the identi�er speci�es an array-type element (either module-type, register-type or bus-type), then an arrayrange can be used to specify one particular element of thearray (an integer between parentheses) or a range of elements (two integer separated bycolon), in which case the �rst integer must be less than the second one). If the arrayrangeis empty, then all the elements of the array are listed.

28

de�nition: goto commandsyntax:gotocommand : "->" label;semantics: A goto command speci�es the next step in the algorithm to be executed.When no goto command is executed in a step, the step immediately following (in thelexicographic order of the description) the current is the next to be executed. If the laststep of the algorithm is executed and no goto command changes the ow of control, thenthe module just sits idle, doing nothing, it does not cause the end of the simulation.

29

de�nition: assignment receiverssyntax:varident : assignident;busident : assignident;assignident : identifierarrayrestrbitfield;arrayrestr : "(" exprsimbeh ")"| empty;semantics: In an assignment operation, a carrier receives a value an expression evaluatesto. Both varident and busident must specify a single register and bus-type element(respectively) of the module. In the case of array of carriers, arrayrestr must be usedto specify a single element. A bit�eld can be used to specify a part of a carrier as thereceiver of the value.Assignments to bus carriers, through the \=" operator are executed at the beginning ofthe cycle (machine or clock). If in a particular step of the algorithm, no value is assignedto a bus, it assumes its default value of either all bits in `1', for \onebus"-type, or all bitsin `0', for \zerobus"-type.Assignments to register carriers, through the \:=" operator are performed at the end ofthe cycle (machine or clock). Since registers are memory carriers, they keep their lastvalue while a new one is not assigned. 30

de�nition: expression in the behavior clausesyntax:expression : exprsimbeh| exprsimbeh "==" exprsimbeh| exprsimbeh "<>" exprsimbeh| exprsimbeh ">" exprsimbeh| exprsimbeh ">=" exprsimbeh| exprsimbeh "<" exprsimbeh| exprsimbeh "<=" exprsimbeh;exprsimbeh : unsgnexprsimbeh| "+" unsgnexprsimbeh| "-" unsgnexprsimbeh;unsgnexprsimbeh : termbeh| unsgnexprsimbeh "+" termbeh| unsgnexprsimbeh "-" termbeh| unsgnexprsimbeh "or" termbeh| unsgnexprsimbeh "xor" termbeh;termbeh : factorbeh| termbeh "*" factorbeh| termbeh "/" factorbeh| termbeh "%" factorbeh| termbeh "and" factorbeh| termbeh "shr" factorbeh| termbeh "shl" factorbeh;factorbeh : integer| ident| unitcall| "(" expression ")"| "not" factorbeh; 31

semantics: Expression are evaluated to values according to precedence rules for theoperators. As usual, what is inside parentheses is evaluated �rst. The order of precedence,from highest to lowest, of the operators is the following:1. bitwise \not" operator;2. arithmetic operators *", \/" and \%" (remainder), bitwise operator \and", shiftright operator \shr" and shift left operator \shl";3. arithmetic operators \+" and \{", bitwise operators \or" and \xor";4. unary \+" and \{" operators (be careful);5. relational operators \==" (equal), \<>" (di�erent), \>" (greater than), \>="(greater than or equal), \<" (less than) and \<=" (less than or equal).When there is more than one operator of equal precedence to be evaluated, the evaluationtakes place from left to right.An expression which is assigned to a bus-type carrier, or which conditions the assignmentof a value to a bus-type carrier, must not involve values of bus-type carriers. The values ofregister-type carriers used in the evaluation of an expression are those values the registershave during the present cycle, before the assignments of new values are performed (theseassignments occur all instantaneously at the end of the cycle).

32

de�nition: evaluation of unitssyntax:unitcall : unitident "(" expressionlist ")";expressionlist : expression| expressionlist "," expression;unitident : identifier;semantics: When a unit evaluation is requested in an expression through the use ofthe unit name (speci�ed by unitident), the output of the unit for the speci�ed inputs(expressionlist), is calculated, and this value is used in the expression. The inputs passedto a unit are a list of expression that are evaluated to their corresponding values. Thenumber of inputs must be equal to the number of input parameters speci�ed in the unitdeclaration. A unit must be declared before (in the lexicographic order) any module thatuses it.

33

de�nition: carrier valuessyntax:ident : identifier arrayrestr bitfield;semantics: Values of carriers are speci�ed in an expression through the names of carriers(identi�er), a particular element identi�cation ((arrayrestr), for the case of arrays ofcarriers, and a bit�eld, that speci�es that only the value of a part of the carrier is to beused. If the bit�eld is empty, then the whole carrier value is used. The identi�er mustbe a name of a register or bus-type carrier of the module.The model of digital systems on which LIDEX is based imposes some restrictions onthe use of carrier values in expressions. A register-type carrier value can be used in anyexpression, but a bus-type carrier value must not be used in an expression that is assignedto a bus-type carrier, or in an expression in a condition that controls the execution of anassignment to a bus-type carrier.When used in expression in a unit de�nition, ident must refer to a unit variable.

34

de�nition: functional unitsyntax:unit : "unit" identifier "(" unitparamlist ")" bitfield ";"constclauseunitvariablesunitbehavior"end"";";unitparamlist : unitparam| unitparamlist "," unitparam;unitparam : identifierbitfield;semantics: The units of LIDEX are equivalent to the functions of Pascal, with therestriction that all parameters are passed as values. From the hardware point of view, itcan be interpreted as a combinational circuit that has an output solely dependent on itsinputs. A LIDEX unit is an entity that instantly operates in its inputs, generating asits output a new value.Each unit has a name (the identi�er following \unit"), through which is referenced inother modules and units. Only modules and units that follow (in the lexicographic orderof description) the declared unit can use it. No form of recursion is possible.The list of parameters (unitparamlist), speci�es the input parameters of the unit. Theyare declared just like the variables in unitvariables, and they can be considered just likevariables that are initialized to the input values of the unit each time it is referenced.Each parameter and variable must have a di�erent name.A unit can have its own constant declaration clause constclause, in which constants localto the unit are declared.The unitbehavior is an algorithm that computes the value of the output of the unit as afunction of its inputs. 35

de�nition: unit variables declarationsyntax:unitvariables : "var"unitvarlist"end"";"| empty;unitvarlist : unitvar| unitvarlist "," unitvar;unitvar : identifierarrayclausebitfield;semantics: A unit can have local variables just like Pascal functions. The variablesare activated each time the unit is referenced and destroyed when the unit is left. Thevariables can be of array-type (when a non-empty arrayclause is present) and can havebit�eld speci�ers just like the carriers of a module. Besides the explicit declared variablesin unitvar, the input parameters can be considered variables, and a variable of the samename as the unit also exists. The output of the unit is the value of this later variable,when the unit algorithm is terminated.
36

de�nition: unit behaviorsyntax:unitbehavior : "behavior"unitcommandlist"end"";";unitcommandlist : unitcommand| unitcommandlist "," unitcommand;unitcommand : label":"simplunitcommandlist;simplunitcommandlist : simplunitcommand| simplunitcommandlist "," simplunitcommand;semantics: The behavior, or algorithm, of a unit is described in a way much similar tothe behavior of a module. It is an algorithm, formed by a sequence of steps that areexecuted in the lexicographic order, unless a jump (goto command) occurs. Each step(unitcommand) can have an associated label that identi�es it, and it is composed by a listof simple commands, which are all executed concurrently and instantaneously. All thesesimple values operate on the present state of the variables, and compute the future valuesof them, that is, the values that will be used in the next step of the algorithm. A unitbehavior may be thought as a module behavior in which the variables are register-typecarriers and the machine cycle is in�nitely fast.
37

de�nition: simple command of a unitsyntax:simplunitcommand : unitvarident ":=" expression| gotocommand| nopcommand| "("simplunitcommandlist")"condition;unitvarident : assignident;semantics: The valid elementary operations for units are a subset of the elementaryoperations for modules. Again, a list of simple commands can be conditioned to executionby an expression. The execution takes place only if the expression evaluates to TRUE (avalue di�erent of 0).The 3 simple operations for units are:1. assignment of the value of an expression to a variable (unitvar);2. goto (jump) to a command, identi�ed through a label (gotocommand);3. no-operation, i. e. do nothing, (nopcommand);The expressions in a unit have the same form as in a module, but of course, they mayrefer only to unit variables.
38

4 Current LimitationsThe currently implemented LIDEX environment has the following value for the imple-mentation dependent constants:� MAXBITS = 63;� MAXARRAY = 32767.The current implementation also restricts the lower bound of an array to be 0.References[1] Mario R. Barbacci. A Comparison of Register Transfer Languages for DescribingComputers and Digital Systems. IEEE Transactions on Computers, C-24(2):137{150, February 1975.[2] Reiner W. Hartenstein. Hardware Description Languages, volume 7 of Advances inCAD for VLSI, chapter 2. North-Holland, Amsterdam, 1987.[3] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer-Verlag, New York, 1975.[4] Stephen C. Johnson. UNIX Programmer's Manual Suplementary Documents, chap-ter Yacc: Yet Another Compiler-Compiler. Regents of the University of California,Berkeley, CA, 1978.[5] Jos�e Eduardo Moreira and Wilson Vicente Ruggiero. A Review of HDLs. TechnicalReport 971, University of Illinois at Urbana-Champaign, Center for SupercomputingResearch and Development, Urbana, IL, 1990.[6] Jos�e Eduardo Moreira and Wilson Vicente Ruggiero. LIDEX Simulation EnvironmentUser's Manual. Technical Report 974, University of Illinois at Urbana-Champaign,Center for Supercomputing Research and Development, Urbana, IL, 1990.[7] Jos�e Eduardo Moreira and Wilson Vicente Ruggiero. LIDEX Tutorial. TechnicalReport 972, University of Illinois at Urbana-Champaign, Center for SupercomputingResearch and Development, Urbana, IL, 1990.[8] Jos�e Eduardo Moreira and Wilson Vicente Ruggiero. The LIDEX Approach. Tech-nical Report 970, University of Illinois at Urbana-Champaign, Center for Supercom-puting Research and Development, Urbana, IL, 1990.39

Indexalias, 17aliasclause, 17aliasexpr, 17aliasident, 17arrayclause, 15arrayrestr, 30assignident, 30behavior, 22behaviorclause, 22bit�eld, 16busident, 30command, 23commandlist, 22compident, 19condition, 24connection, 18connectionclause, 18connectionexpr, 18connectparam, 8connectparamlist, 8connidenti�er, 19constclause, 9constdecl, 9constdecllist, 9cyclespec, 22dumpcommand, 28expression, 31expressionlist, 33exprsim, 20exprsimbeh, 31factor, 20factorbeh, 31gotocommand, 29ident, 34initarrayrestr, 21

initializationlist, 21initialize, 21initializeclause, 21initvarident, 21label, 23modstrelem, 12modstrelemlist, 12modstructure, 10module, 7nopcommand, 27onebusstrelem, 14onebusstrelemlist, 14onebusstructure, 10phasespec, 23simplcommand, 24simplcommandlist, 23simplunitcommand, 38simplunitcommandlist, 37stopcommand, 26structure, 10structureclause, 10system, 5systemconst, 6systemconstclause, 6systemconstlist, 6term, 20termbeh, 31unit, 35unitbehavior, 37unitcall, 33unitcommand, 37unitcommandlist, 37unitident, 33unitmodule, 540

unitmodulelist, 5unitparam, 35unitparamlist, 35unitvar, 36unitvariables, 36unitvarident, 38unitvarlist, 36unsgnexprsim, 20unsgnexprsimbeh, 31varident, 30varstrelem, 13varstrelemlist, 13varstructure, 10zerobusstrelem, 14zerobusstrelemlist, 14zerobusstructure, 10

41

