LIDEX Reference Manual *

José Eduardo Moreira
Wilson Vicente Ruggiero
Departamento de Engenharia de Eletricidade, Escola Politécnica da
Universidade de Sao Paulo, Brasil
Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign, USA

February 1990

CSRD Report No. 973

Abstract

This is the reference manual for the LIDEX hardware description language.
The constructs of the language are syntactically defined using the YACC nota-
tion, and an explanation of the semantics is given in natural language. Current
limitations of the present implementation are discussed.

*This work was supported in part by the Interamerican Development Bank/University of Sao Paulo
project, and the U. S. Department of Energy under Grant No. DE-FG02-85ER25001. José E. Moreira
is with Laboratério de Sistemas Integraveis, and Wilson V. Ruggiero is with Laboratério de Sistemas
Digitais

Contents

1 Introduction 2
2 Basics 3
3 The Language 4
4 Current Limitations 39

1 Introduction

LIDEX is a powerful hardware description language centered on the RT level, but with
capabilities for efficiently covering of the ISP and Switching levels. The currently available
simulator generator implements the full language as described in this manual, allowing
the simulation of complex systems.

The description of a digital systems spans over three different design azxis: the structural,
the behavioral, and the morphological. Some languages do allow description in all three
axis, but most hardware description languages emphasize one or two of the axis [2, 5].

LIDEX is particularly strong at the behavioral axis, and very good at the structural
axis. Its descriptions power in the morphological axis, however, is very limited, allowing
the description of topological features, but not geometrical ones. The basic structural
elements of a system described in LIDEX are the two type of carriers: registers (memory
carriers) and busses (memoryless carriers) [1]. These basic elements are used for building
up modules, and modules in turn can be used to build more complex modules, until we
have the complete system. Besides its structure, each module also has an algorithmic
description of its behavior. The syntax and semantics of LIDEX are based in a structured
model of digital systems which is described in a related document [8], and the reader is
suggested to read this document in order to better understand some characteristics of
the language.

We will start our description of the LIDEX language by some very basic items used to
write the descriptions of digital systems. We will the proceed in a top-down approach,
describing simultaneously both the syntax and the semantics of the language.

2 Basics

We will describe the syntax of LIDEX using the notation of YACC [4]. This is more than
reasonable, since the simulator for LIDEX was written with YACC, and the definitions
presented here are the actual inputs to YACC, so there is no danger of disagreement
between the language definition and the implementation.

A description in LIDEX is built up by atoms, or tokens as they are known in compiler
terminology. The tokens for LIDEX are:

system module unit structure
alias connection Initialize behavior
mod var onebus zerobus
of phase cycle const

for to do begin

N —""
I
—

= — >
= <> > <

>= <= + —

or Xor and not

shr shl * /

% nop stop dump

end identifier integer string

All the tokens, except for identifier, integer and string are represented in the description
text as a string of characters, with exactly the same characters as in the tokens above;
these strings are known as keywords.

An identifier is a string of no more than 15 characters, which may be letters and/or
numbers, starting with a letter, and not equal to any keyword.

An integer is an unsigned integer number expressed either in decimal notation (only digits
0to 9), or in hexadecimal notation (digits 0 to 9 and A to F) preceded by a ‘$’ character.

An string is any sequence of characters enclosed by double quote marks. Example: “THIS

IS A STRING”.

LIDEX is a case insensitive language, which means that an upper case letter is exactly
equivalent to its lower case correspondent. The effect is that of transforming all upper
case letters into lower case before processing the description.

3 The Language

We will present the syntax and semantics of the language constructs in a “natural” order
of definition. Literals are represented by a sequence of characters enclosed by double
quote marks. In the end of the reference manual there is an alphabetic index of the
language constructs, with the page numbers where the definition for each one is found.
For examples of utilization of LIDEX the reader is recommended to read the document

“LIDEX Tutorial” [7].

definition: system

syntax:

system : "system" identifier ";"
systemconstclause
unitmodulelist
Ilendll

unitmodulelist : unitmodule
| unitmodulelist unitmodule

b

unitmodule : unit
| module

b

semantics: A digital system is built up of modules. A module is a structural member,
and one or more modules can be used to build more complex modules, and so on until
the last module in the description, which must be called “main” and which represents the
full system. A digital system description may also contain functional units. A unit is not
a structural member, but it can be viewed as a combinational circuit which transforms
input values into an output value which is solely dependent on the input values. Units
are used for describing behaviors of modules. The systemconstelause construct is used
to define system-wise constants.

definition: system constants

syntax:
systemconstclause : "const"
systemconstlist
Ilendll
1n.n
| empty

systemconstlist : systemconst
| systemconstlist "," systemconst

b

systemconst : identifier
1mn n
identifier
n=n
integer
| identifier

integer

semantics: In the system constant declaration clause, names are associated with integer
values. Whenever a constant name is referenced, the reference is substituted for the
associated integer. A name associated to an integer value can appear anywhere an integer
can appear, inside the scope for the name. Two types of constants can be declared in
the system constant declaration clause:

1. system-valid constant — declared as just one identifier, which has as its scope the
text that goes from the declaration of the constant until the end of the system;

2. module-valid constant — declared as two identifiers separated by a dot, the first
identifier must be the name of a module inside the system, and the second identifier
is the name of a constant for this module (its scope is the whole module).

definition: module

syntax:

module : "module" identifier
"(" connectparamlist ")"
|l;|l
constclause
structureclause
aliasclause
connectionclause
initializeclause
behaviorclause

|lend|l
1n.n
b

semantics: Each module has a name associated to it, identifier, and this name is used
when referencing to the module. If structural elements of a module will be connected
to elements of another module, then a list of these elements must appear between the
parentheses right after the module name (connectparamlist). Besides this list, a module
description is built up of a

o constclause: declaration of constants internal to the module;
o structureclause: declaration of the structural elements that compose the module;
o aliasclause: declaration of aliases for the structural elements of the module;

e connectionclause: declaration of connections between structural elements of the
module;

o initializeclause: declaration of initial values for the structural elements of the mod-

ule;

o behaviorclause: algorithmic description of the behavior of the module.

definition: connection parameters

syntax:

connectparamlist : connectparam
| connectparamlist "," connectparam
| empty

b

connectparam : identifier

semantics: The names of all elements of this module that will be used for connection
with elements of other modules must be declared. The order in which the elements are
listed is not important.

definition: constant declaration clause

syntax:
constclause : '"const"
constdecllist
Ilendll
mn.n
| empty

b

constdecllist : constdecl
| constdecllist

1non
3

constdecl

constdecl : identifier

integer

semantics: In the constant declaration clause of a module, names are associated with
integer values. Whenever a constant name is referenced, the reference is substituted for
the associated integer. A name associated to an integer value can appear anywhere an
integer can appear, inside the scope for the name, which ranges from immediately after
its declaration until the end of the module. The constant declaration clause is optional
(it may be empty).

definition: structure declaration clause

syntax:
structureclause : "structure"
structure
Ilendll
mn.n
| empty

structure : modstructure
varstructure
zerobusstructure
onebusstructure

modstructure : "mod" modstrelemlist " ;"
| empty

varstructure : "var" varstrelemlist ";"
| empty

zerobusstructure : '"zerobus'" zerobusstrelemlist ";"
| empty

b

onebusstructure : "onebus" onebusstrelemlist '";"
| empty

b

semantics: The structural elements that compose a module can be of four different types
(notice there is a proper order of declaration):

1. type mod: other modules, previously (in the lexicographic order of the description)
declared;

2. type var: memory carriers, i.e. registers;

10

3. type zerobus: memoryless carriers, i.e. busses, which have a default value of zero
in their lines;

4. type onebus: memoryless carriers, i.e. busses, which have a default value of one in
their lines.

Each element must have a name different from the name of any other element of this
module, from any system-wise or module-wise constant, and also different from any unit
of the description (this is to ensure that a name appearing in an expression can be
immediately identified in its meaning).

11

definition: module-type elements declaration

syntax:

modstrelemlist : modstrelem
| modstrelemlist "," modstrelem

b

modstrelem : identifier
arrayclause
"of" identifier

semantics: The list of module-type structural elements is made of individual declarations
in which the name of the element (first identifier) is declared, then the array range, if
the element is of type array, is specified (arrayclause) and then the module which is the
basic type of this element is declared (identifier following “of”). This (basic type) module
must be previously (in the lexicographic order of the description) declared.

12

definition: register-type element declaration

syntax:

varstrelemlist : varstrelem
| varstrelemlist "," varstrelem

b

varstrelem : identifier
arrayclause
bitfield

semantics: The list of register-type structural elements is made of individual declarations
in which the name of the element (identifier) is declared, then the array range, if the
element is of type array, is specified (arrayclause) and then the bitfield, which specifies
the first and last bit of the register. The first and last bits of a register must obey the
following restrictions:

1. the first bit must be less than or equal to the last bit;

2. both first and last bits must be between 0 and an implementation defined constant

MAXBITS.

If no bits are specified in the bitfield, then both first and last bits are assumed to be 0.

13

definition: bus-type element declaration

syntax:

Zerobusstrelemlist : zerobusstrelem
| zerobusstrelemlist ",'" zerobusstrelem

b

zerobusstrelem : identifier
arrayclause
bitfield

onebusstrelemlist : onebusstrelem
| onebusstrelemlist "," onebusstrelem

b

onebusstrelem : identifier
arrayclause
bitfield

semantics: The lists of bus-type structural elements is made of individual declarations
in which the name of the element (identifier) is declared, then the array range, if the
element is of type array, is specified (arrayclause) and then the bitfield, which specifies
the first and last bit of the bus. The first and last bits of a bus must obey the following
restrictions:

1. the first bit must be less than or equal to the last bit;

2. both first and last bits must be between 0 and an implementation defined constant

MAXBITS.

If no bits are specified in the bitfield, then both first and last bits are assumed to be 0.

14

definition: array specification

syntax:
arrayclause : "("
integer
integer
||)||
| empty

semantics: The first and second integers of an arrayclause, specify the lower and upper
bounds of the array being declared, respectively. The lower and upper bounds of the
array must obey the following rules:

1. the lower bound must be less than or equal to the upper bound;

2. both the lower and upper bound must be between 0 and an implementation defined

constant MAXARRAY.

If the arrayclause is empty, then the element is not of array-type.

15

definition: bitfield specification

syntax:
bitfield : "|" integer "|"
| "|" integer ":" integer "|"

| empty

b

semantics: In the first case, when only one integer is specified, then both the first and
last bits are assumed to be this same integer. When two integers are specified (second
case), the first one is taken as the first bit, and the second one is taken as the last bit.
A bitfield may be empty.

16

definition: alias clause

syntax:
aliasclause : "alias"
alias
Ilendll
mn.n
| empty

alias : aliasexpr
| alias "," aliasexpr

b

aliasexpr : aliasident

aliasident

aliasident : identifier
bitfield

semantics: The alias clause declares new (aliases) names that are synonyms to carriers
or part of carriers. Aliases may be declared only for simple (non-array) registers and
busses. The aliases names must be different from any element name, and the scope of
an alias goes from the end of the initialize clause to the end of the module. Each alias is
declared by an expression of the form

alias name = real carrier name

with a possible bitfield appended to each name. The bitfield appended to the alias name
specifies the first and last bit of the alias. The bitfield appended to the real carrier name
specifies the first and last bits of a part of the carrier, which corresponds to the first
and last bits of the aliases. Whenever the alias name is used inside its legal scope, the
reference to the alias is substituted for a corresponding reference to the real carrier. The
bit-width for the alias and the original carrier (or part of it) must be the same.

17

definition: connection clause

syntax:
connectionclause : "connection"
connection
Ilendll
mn.n
)
| empty

connection : connectionexpr
| connection "," connectionexpr

b

connectionexpr : compident '"=" compident
| "for" identifier ":=" integer "to" integer "do"
"begin"
connection
"end"

semantics: The connectionclause is a list of connection statements that connect two
carriers (registers or busses). The carriers must be either non-array or a particular
element of an array, and only carriers of the same type (var-var, onebus-onebus, zerobus-
zerobus) can be connected, and only full carriers (not parts of a carrier) can be connected.
Loops of the for-type, in which the control variable ranges from the first integer to the
second integer in increments of 1, can be used to describe networks of connection.

18

definition: connection element

syntax:

compident : connidentifier

connidentifier
1" 1"

connidentifier

connidentifier : identifier
| identifier
||(||
exprsim

||)||

semantics: compident specifies a carrier (register or bus) to be connected to another
carrier. The carrier can be either an element of the module, in which case it can be
specified by only one connidentifier, or it can be an element of a module-type element of
the module, in which case two connidentifiers separated by a period are used, the first
one to identify the module-type element and the other to identify the carrier inside this
module-type element. If either the module-type element or the carrier are of array-type,
then it is necessary to specify a particular element of the array through an exprsim, a
expression that must evaluate to a valid index of the array.

19

definition: expression used in connections

syntax:

exprsim : unsgnexprsim
| "+" unsgnexprsim
| "-" unsgnexprsim

b

unsgnexprsim : term
| unsgnexprsim "+" term
| unsgnexprsim "-" term

b

term : factor
| term "*" factor
| term "/" factor
| term "¥%" factor

b

factor : integer
| identifier
| ||(|| expresim ||)||

b

semantics: The expression used to calculate an array index in a connection is very
simple, and consists only of operators, integer and identifiers, and the identifiers must
correspond to the control variables of whatever for-loop the expression is inside. The
order of precedence, from highest to lowest, of the operators is the following:

1. first, what is inside parentheses is evaluated;

2. binary operators 7*7 7 /7 and ”came next;

3. binary 47 and ”-” are lower precedence operators;

4. unary "4+” and 7-” have the lowest precedence (be careful);

When there is more than one operator of equal precedence to be evaluated, the evaluation
takes place from left to right.

20

definition: initialize clause

syntax:

initializeclause : "initialize" initialize "end" ";"
| empty

b

initialize : initializationlist

initializationlist : initialization
| initializationlist "," initialization

b

initialization : initvarident ":=" integer

initvarident : identifier
initarrayrestr

initarrayrestr : " ("
integer
||)||
| empty

semantics: The initialization clause is used to set initial value to registers (and only
registers) of a module, before the the start of the algorithm that describes the behavior
of the module. If a register is of the array-type, the a particular element of the array
must be specified with initarrayrestr

21

definition: behavior clause

syntax:
behaviorclause : "behavior"
cyclespec
behavior
Ilendll
| empty
cyclespec : " ("
”CYC].e”
integer
||)||
| empty

behavior : commandlist

commandlist : command
| commandlist " ;" command

b

semantics: The behavior of a module is described through an algorithm composed by
a list of commands. Each command corresponds to one step of the algorithm, and each
step is executed either in one machine cycle or in one clock cycle (see the definition of
command. The cyclespec is used to specify the number of clock cycles in one machine
cycle of the module, if it is empty then the machine cycle is taken to be equal to the
clock cycle (equivalent to declaring “(cycle 1)7).

22

definition: command

syntax:

command : label

phasespec
simplcommandlist

simplcommandlist : simplcommand

| simplcommandlist "," simplcommand
label : identifier
| empty
phasespec : 'phase'" integer ":" ":"
| empty

b

semantics: Each command, which corresponds to one step in the algorithmic description
of the behavior of a module, may be preceded by a label. The label is a name that identifies
the command, and it is used for referencing the command in goto-type commands. Any
command can have a label, so that labels may be added for clarity. No two commands
can have the same label, and the scope of a label is the whole behavior clause in which
it is declared.

A command is built up of one or more simple commands, which are all executed in
parallel in the same step of the algorithm. The step may be executed in one machine
cycle, if phasespec is empty, or in one clock cycle otherwise. The integer in phasespec has
no use except to add clarity to the description.

If the algorithm executes a step in one clock cycle, and then moves to a step that is to
be executed in one machine cycle, the execution of the later step does not start until the
system reaches a clock cycle that corresponds to the beginning of a machine cycle for the
module.

23

definition: simple command

syntax:

simplcommand : varident

"n.=n

expression

| busident

n=n
expression
gotocommand
stopcommand
nopcommand
dumpcommand
||(||
simplcommandlist
||)||

condition

condition : "[" expression "]"

semantics: A simple command can be either one of six elementary operations, or a list of
simple commands enclosed in parentheses and followed by a condition. If the expression
in the condition evaluates to TRUE (a value different of 0), then all the simple commands
in the list are executed. If the expression in the condition evaluates to FALSE (a value
equal to 0), then the the whole list is ignored. The six elementary operations that can
be performed in a simple command are:

1. assignment of the value of an expression to a register-type carrier (varident);
2. assignment of the value of an expression to a bus-type carrier (busident);
3. goto (jump) to a command, identified through its label (gotocommand)

4. no-operation action, i.e. do nothing (nopcommand);

5. show the contents of a carrier, an array of carriers, or all the carrier in a module-type
element of the module (dumpcommand);

24

6. stop the simulation (stopcommand).

The last two operations are not really used to describe the system, but rather to control
the simulation and the output produced during it.

25

definition: stop command

syntax:

stopcommand : '"stop"

semantics: When a stop command is executed, the simulation for the whole system
terminates. The stop command is executed at the end of the machine or clock cycle
(depending on the type of command).

26

definition: nop command

syntax:

nopcommand : "nop"

semantics: A nop command does nothing, it can be used to specify that during a cycle
(machine or clock), nothing is to be executed.

27

definition: dump command

syntax:
dumpcommand : "dump" " (" identifier arrayrange ")"
arrayrange : " (" integer ":" integer ")"

| ||(|| integer ||)||
| empty

b

semantics: The dump command, when executed, generates a listing of the values of
the specified carriers. If the identifier is a module-type element of the module, then all
carriers of the specified element (including those in module-type elements of the latter)
are listed. If the identifier specifies an array-type element (either module-type, register-
type or bus-type), then an arrayrange can be used to specify one particular element of the
array (an integer between parentheses) or a range of elements (two integer separated by
colon), in which case the first integer must be less than the second one). If the arrayrange
is empty, then all the elements of the array are listed.

28

definition: goto command

syntax:

gotocommand : "->" label;

semantics: A goto command specifies the next step in the algorithm to be executed.
When no goto command is executed in a step, the step immediately following (in the
lexicographic order of the description) the current is the next to be executed. If the last
step of the algorithm is executed and no goto command changes the flow of control, then
the module just sits idle, doing nothing, it does not cause the end of the simulation.

29

definition: assignment receivers

syntax:

varident : assignident

busident : assignident

assignident : identifier
arrayrestr
bitfield

arrayrestr : "(" exprsimbeh ")"
| empty

b

semantics: In an assignment operation, a carrier receives a value an expression evaluates
to. Both wvarident and busident must specify a single register and bus-type element
(respectively) of the module. In the case of array of carriers, arrayrestr must be used
to specify a single element. A bitfield can be used to specify a part of a carrier as the
receiver of the value.

Assignments to bus carriers, through the “=" operator are executed at the beginning of

the cycle (machine or clock). If in a particular step of the algorithm, no value is assigned
to a bus, it assumes its default value of either all bits in ‘1’, for “onebus”-type, or all bits
in ‘0’, for “zerobus”-type.

Assignments to register carriers, through the “:=” operator are performed at the end of
the cycle (machine or clock). Since registers are memory carriers, they keep their last
value while a new one is not assigned.

30

definition: expression in the behavior clause

syntax:

expression :

exprsimbeh :

exprsimbeh
exprsimbeh
exprsimbeh
exprsimbeh
exprsimbeh
exprsimbeh
exprsimbeh

"'=="" exprsimbeh
"<>" exprsimbeh
">'" exprsimbeh
">=" exprsimbeh
"<" exprsimbeh
"<=" exprsimbeh

unsgnexprsimbeh

| "+" unsgnexprsimbeh
| "-" unsgnexprsimbeh

unsgnexprsimbeh

termbeh

termbeh

unsgnexprsimbeh
unsgnexprsimbeh
unsgnexprsimbeh
unsgnexprsimbeh

factorbeh
termbeh

"x'"' factorbeh

"+" termbeh
"-" termbeh
termbeh
"xor" termbeh

Ilorll

factorbeh :

termbeh
termbeh
termbeh
termbeh
termbeh

|land|l
|lshr|l
|lsh1|l

integer
ident
unitcall

"/ factorbeh
"%4" factorbeh

factorbeh
factorbeh
factorbeh

"(" expression ")"
"not" factorbeh

31

semantics: Expression are evaluated to values according to precedence rules for the
operators. Asusual, what is inside parentheses is evaluated first. The order of precedence,
from highest to lowest, of the operators is the following:

1. bitwise “not” operator;

2. arithmetic operators “*7, “/” and “%” (remainder), bitwise operator “and”, shift
right operator “shr” and shift left operator “shl”;

3. arithmetic operators “+” and “~7, bitwise operators “or” and “xor”;
4. unary “+” and “=” operators (be careful);
5. relational operators “==" (equal), “<>" (different), “>” (greater than), “>="

(greater than or equal), “<” (less than) and “<=" (less than or equal).

When there is more than one operator of equal precedence to be evaluated, the evaluation
takes place from left to right.

An expression which is assigned to a bus-type carrier, or which conditions the assignment
of a value to a bus-type carrier, must not involve values of bus-type carriers. The values of
register-type carriers used in the evaluation of an expression are those values the registers
have during the present cycle, before the assignments of new values are performed (these
assignments occur all instantaneously at the end of the cycle).

32

definition: evaluation of units

syntax:

unitcall : unitident "(" expressionlist ")"

expressionlist : expression
| expressionlist "," expression

b

unitident : identifier

semantics: When a unit evaluation is requested in an expression through the use of
the unit name (specified by wunitident), the output of the unit for the specified inputs
(expressionlist), is calculated, and this value is used in the expression. The inputs passed
to a unit are a list of expression that are evaluated to their corresponding values. The
number of inputs must be equal to the number of input parameters specified in the unit
declaration. A unit must be declared before (in the lexicographic order) any module that
uses it.

33

definition: carrier values

syntax:

ident : identifier arrayrestr bitfield

semantics: Values of carriers are specified in an expression through the names of carriers
(identifier), a particular element identification ((arrayrestr), for the case of arrays of
carriers, and a bitfield, that specifies that only the value of a part of the carrier is to be
used. If the bitfield is empty, then the whole carrier value is used. The identifier must
be a name of a register or bus-type carrier of the module.

The model of digital systems on which LIDEX is based imposes some restrictions on
the use of carrier values in expressions. A register-type carrier value can be used in any
expression, but a bus-type carrier value must not be used in an expression that is assigned
to a bus-type carrier, or in an expression in a condition that controls the execution of an
assignment to a bus-type carrier.

When used in expression in a unit definition, ident must refer to a unit variable.

34

definition: functional unit

syntax:
unit : "unit" identifier "(" unitparamlist ")" bitfield ";"
constclause
unitvariables
unitbehavior
|lend|l

1n.n
b

unitparamlist : unitparam
| unitparamlist "," unitparam

b

unitparam : identifier
bitfield

semantics: The units of LIDEX are equivalent to the functions of Pascal, with the
restriction that all parameters are passed as values. From the hardware point of view, it
can be interpreted as a combinational circuit that has an output solely dependent on its
inputs. A LIDEX unit is an entity that instantly operates in its inputs, generating as
its output a new value.

Each unit has a name (the identifier following “unit”), through which is referenced in
other modules and units. Only modules and units that follow (in the lexicographic order
of description) the declared unit can use it. No form of recursion is possible.

The list of parameters (unitparamlist), specifies the input parameters of the unit. They
are declared just like the variables in unitvariables, and they can be considered just like
variables that are initialized to the input values of the unit each time it is referenced.
Each parameter and variable must have a different name.

A unit can have its own constant declaration clause constclause, in which constants local
to the unit are declared.

The unitbehavior is an algorithm that computes the value of the output of the unit as a
function of its inputs.

35

definition: unit variables declaration

syntax:
unitvariables : "var"
unitvarlist
Ilendll
mn.n
| empty

unitvarlist : unitvar
| unitvarlist "," unitvar

b

unitvar : identifier
arrayclause
bitfield

semantics: A unil can have local variables just like Pascal functions. The variables
are activated each time the unit is referenced and destroyed when the unit is left. The
variables can be of array-type (when a non-empty arrayclause is present) and can have
bitfield specifiers just like the carriers of a module. Besides the explicit declared variables
in unitvar, the input parameters can be considered variables, and a variable of the same
name as the unit also exists. The output of the unit is the value of this later variable,
when the unit algorithm is terminated.

36

definition: unit behavior

syntax:

unitbehavior : "behavior"
unitcommandlist
|lend|l

1n.n
b

unitcommandlist : unitcommand
| unitcommandlist ",'" unitcommand

b

unitcommand : label
mn.n

simplunitcommandlist

simplunitcommandlist : simplunitcommand
| simplunitcommandlist "," simplunitcommand

b

semantics: The behavior, or algorithm, of a unit is described in a way much similar to
the behavior of a module. It is an algorithm, formed by a sequence of steps that are
executed in the lexicographic order, unless a jump (goto command) occurs. Each step
(unitcommand) can have an associated label that identifies it, and it is composed by a list
of simple commands, which are all executed concurrently and instantaneously. All these
simple values operate on the present state of the variables, and compute the future values
of them, that is, the values that will be used in the next step of the algorithm. A unit
behavior may be thought as a module behavior in which the variables are register-type
carriers and the machine cycle is infinitely fast.

37

definition: simple command of a unit

syntax:

simplunitcommand : unitvarident '":=" expression
| gotocommand
| nopcommand
| ||(||
simplunitcommandlist
||)||

condition

unitvarident : assignident

semantics: The valid elementary operations for units are a subset of the elementary
operations for modules. Again, a list of simple commands can be conditioned to execution

by an expression. The execution takes place only if the expression evaluates to TRUE (a
value different of 0).

The 3 simple operations for units are:

1. assignment of the value of an expression to a variable (unitvar);
2. goto (jump) to a command, identified through a label (gotocommand);

3. no-operation, i. e. do nothing, (nopcommand);

The expressions in a unit have the same form as in a module, but of course, they may
refer only to unit variables.

38

4

Current Limitations

The currently implemented LIDEX environment has the following value for the imple-
mentation dependent constants:

o MAXBITS = 63;
e MAXARRAY = 32767.

The current implementation also restricts the lower bound of an array to be 0.

References

1]

Mario R. Barbacci. A Comparison of Register Transfer Languages for Describing
Computers and Digital Systems. [EEE Transactions on Computers, C-24(2):137—
150, February 1975.

Reiner W. Hartenstein. Hardware Description Languages, volume 7 of Advances in

CAD for VLSI chapter 2. North-Holland, Amsterdam, 1987.

Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer-
Verlag, New York, 1975.

Stephen C. Johnson. UNIX Programmer’s Manual Suplementary Documents, chap-
ter Yacc: Yet Another Compiler-Compiler. Regents of the University of California,
Berkeley, CA, 1978.

José Eduardo Moreira and Wilson Vicente Ruggiero. A Review of HDLs. Technical
Report 971, University of Illinois at Urbana-Champaign, Center for Supercomputing
Research and Development, Urbana, 11, 1990.

José Eduardo Moreira and Wilson Vicente Ruggiero. LIDEX Simulation Environment
User’s Manual. Technical Report 974, University of Illinois at Urbana-Champaign,
Center for Supercomputing Research and Development, Urbana, 11, 1990.

José Eduardo Moreira and Wilson Vicente Ruggiero. LIDEX Tutorial. Technical
Report 972, University of Illinois at Urbana-Champaign, Center for Supercomputing
Research and Development, Urbana, 11, 1990.

José Eduardo Moreira and Wilson Vicente Ruggiero. The LIDEX Approach. Tech-
nical Report 970, University of Illinois at Urbana-Champaign, Center for Supercom-
puting Research and Development, Urbana, 11, 1990.

39

Index

alias, 17
aliasclause, 17
aliasexpr, 17
aliasident, 17
arrayclause, 15
arrayrestr, 30
assignident, 30

behavior, 22
behaviorclause, 22
bitfield, 16
busident, 30

command, 23
commandlist, 22
compident, 19
condition, 24
connection, 18

connectionclause, 18

connectionexpr, 18
connectparam, 8
connectparamlist, 8
connidentifier, 19
constclause, 9
constdecl, 9
constdecllist, 9
cyclespec, 22

dumpcommand, 28

expression, 31
expressionlist, 33
exprsim, 20
exprsimbeh, 31

factor, 20
factorbeh, 31

gotocommand, 29

ident, 34
initarrayrestr, 21

40

initializationlist, 21
initialize, 21
initializeclause, 21
initvarident, 21

label, 23

modstrelem, 12
modstrelemlist, 12
modstructure, 10
module, 7

nopcommand, 27

onebusstrelem, 14
onebusstrelemlist, 14
onebusstructure, 10

phasespec, 23

simplcommand, 24
simplcommandlist, 23
simplunitcommand, 38
simplunitcommandlist, 37
stopcommand, 26
structure, 10
structureclause, 10
system, 5
systemconst, 6
systemconstclause, 6
systemconstlist, 6

term, 20
termbeh, 31

unit, 35
unitbehavior, 37
unitcall, 33
unitcommand, 37
unitcommandlist, 37
unitident, 33
unitmodule, 5

unitmodulelist, 5
unitparam, 35
unitparamlist, 35
unitvar, 36
unitvariables, 36
unitvarident, 38
unitvarlist, 36
unsgnexprsim, 20
unsgnexprsimbeh, 31

varident, 30
varstrelem, 13
varstrelemlist, 13
varstructure, 10

zerobusstrelem, 14
zerobusstrelemlist, 14
zerobusstructure, 10

41

