Enabling Technologies for System-on-Chip Development, November 19-20, 2001, Tampere, Finland
http://www.cs.tut.fi/soc/

Reiner Hartenstein, University of Kaiserslautern, Germany
http://kressarray.de

Reconfigurable Computing Architectures and Methodologies for System-on-Chip;
Reiner Hartenstein, Monday, November 19, 10:15 - 11:00 hrs.
Reiner Hartenstein, University of Kaiserslautern, Germany
http://kressarray.de

Enabling Technologies for System-on-Chip Development,
November 19-20, 2001, Tampere, Finland
http://www.cs.tut.fi/soc/

Configware / Flowware Compilation

high level source program

rewriter

intermediate

mapper

configured

scheduler

flowware

data sequencer

KressArray Family generic Fabrics: a few examples

Examples of 2nd Level Interconnect:
layouted over rDPU cell

- no separate routing areas!

KressArray Xplorer

Without VHDL

Term Rewriting System (TRS):

- as a Module Generator Generator (TRS-MGG)
- Platform-based verification at very high level (math)

Scalability for fine grain morphware

- FPGAs supporting CLB macro block cell concept
- Mapper using (macro) wiring by abutment
- Introduce new machine paradigm to undergraduate education
- Teach hardware / configware / software co-design

Reconfigurable Computing Architectures and Methodologies for System-on-Chip;
Reiner Hartenstein, Monday, November 19, 10:15 - 11:00 hrs.
Enabling Technologies for System-on-Chip Development, November 19-20, 2001, Tampere, Finland
http://www.cs.tut.fi/soc/

Reiner Hartenstein, University of Kaiserslautern, Germany
http://kressarray.de

Reconfigurable Computing Architectures and Methodologies for System-on-Chip;
Reiner Hartenstein, Monday, November 19, 10:15 - 11:00 hrs.
Enabling Technologies for System-on-Chip Development, November 19-20, 2001, Tampere, Finland

Reiner Hartenstein, University of Kaiserslautern, Germany
http://kressarray.de

http://www.cs.tut.fi/soc/

Reconfigurable Computing Architectures and Methodologies for System-on-Chip; Reiner Hartenstein, Monday, November 19, 10:15 - 11:00 hrs.
Enabling Technologies for System-on-Chip Development,
November 19-20, 2001, Tampere, Finland
http://www.cs.tut.fi/soc/

Reiner Hartenstein, University of Kaiserslautern, Germany
http://kressarray.de
Anti machine is the way to go
vN is obsolete for massive fine grain and coarse grain Morphware

Problems to be solved

• Microelectronics History
• fine grain and coarse grain Morphware
• Anti Matter of Computing
• Anti Machine and its Resources
• Problems to be solved

What is the trend?
• vN is needed for embedded systems, OS, compilers, Segekrantz software, non-performance-critical applications, others...
• vN is absolute for massive parallelism, except some special application areas
• Anti machine is the way to go for massive parallelism, also data-intensive applications
• Morphware is the way for high performance with short product life cycles, unstable standards

Conclusion: all knowledge needed is available

• machine paradigm
• languages
• hw/sw partitioning methodology
• compilation techniques
• anti architectural resources
• sequencing methodology: hw & sw
• parallel memory IP core and module generator vendors
• anything else needed

© 2002, reiner@hartenstein.de
http://hartenstein.de

Reconfigurable Computing Architectures and Methodologies for System-on-Chip:
Reiner Hartenstein, Monday, November 19, 10:15 - 11:00 hrs.
Enabling Technologies for System-on-Chip Development,
November 19-20, 2001, Tampere, Finland
http://www.cs.tut.fi/soc/

Reconfigurable Computing Architectures and Methodologies for System-on-Chip;
Reiner Hartenstein, Monday, November 19, 10:15 - 11:00 hrs.

© 2002, reiner@hartenstein.de
http://hartenstein.de

Terminology: Digital System Platforms clearly distinguished

<table>
<thead>
<tr>
<th>platform</th>
<th>source running on it</th>
<th>machine paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>middleware</td>
<td>system paradigm</td>
</tr>
</tbody>
</table>