

A Flexible Architecture for Image Processing

by
R.W. Hartenstein

A. Hirschbiel
M.Weber

April 1987
Kaiserslautern University

Computer Science Department
Postfach 3049

D-6750 Kaiserslautern, F.R.G.

Phone: xx49 631 205 2606

Keywords:

¥ image processing¥ flexible architecture
¥ pattern matching, recognition¥ segmentation, shrink,expand
¥ VLSI layout processing¥ routing

- VLSI impact on architectures
- Tools and methods for architecture design and description
- computer architecture
- Map oriented data processing

ABSTRACT

The paper describes an innovative computation resource concept which for
a class of data processing problems is an alternative to the von Neumann ma-
chine. The 'processor' , called 'Map Oriented Machine' (MOM), used for this
concept is faster than a von Neumann-type computer, however, it is substan-
tially less expensive than a fully parallel hardwarized implementation using
full custom or semi custom circuits. Instead of a program store with a pro-
gram sequencer a personalized hardware is used, and, to 'program' this ma-
chine CAD tools are used instead of conventional compilers. The MOM
concept is a compromise between the purely sequential von Neumann con-
cept (sequential control part and sequential data part) and fully parallel solu-
tions (parallelized control part and parallelized data manipulation side)
insofar, as the control part has been parallelized, the data manipulation side,
however, still uses a universal sequential access organisation.

b) State of the Art in this Field :

There are several approaches on speeding up image
processing using VLSI implementations. All of
them use a certain number of uniform processing el-
ements (PEs) which are connected for intercommu-
nication purposes. The arrangements of these PEs
can be linear arrays (pipelines) or square arrays. The
number of PEs determines the degree in paralleliza-
tion achieved. The image data is pulsed through the
PEs, if the implementation is based on a systolic ar-
ray concept, or the complete image is stored in a PE
square array and the PEs perform the same compu-
tations simultaneously based on a cellular array
concept. The PEs are limited to a rather small range
of operations or even they are able to perform just
one single operation.

c) Stating of Problem :

There are mainly three methods to solve image
processing problems.

¥ Von Neumann computers or multicomputers
They use a classical software solution which

is flexible, but rather slow, because they have a
sequential program access and sequential data
access. Multicomputer systems parallelize the
programs, but are difficult to program and have a
large administrative overhead. It is difficult to
achieve the parallel operations the hardware re-
sources seem to offer.

¥ Array Architectures using simple processing ele-
ments

The use of special very simple processing el-
ements make this approach very fast, but also
very inflexible and expensive. These architec-
tures use parallelized control parts and data ma-
nipulation parts. In most of these architectures
the data is pulsed through the array and are
known as systolic arrays.

¥ Pipeline Architectures
One example for this type is the cytocomput-

er [STER81]. It is severely inflexible because of

a very rigid scanning scheme, it can perform only
a videoscan scheme. Therefore it is not suitable
for data dependent scanning schemes.

A relatively inexpensive but highly flexible acceler-
ator for moderate performance requirements, for
direct applications, as well as for simulations is
not available.

d) Method Chosen for Solving the Problem :

The gap between the totally flexible but slow von
Neumann solution and the very fast but expensive
and inflexible array and pipeline architectures is
filled with a medium speed, low cost solution called
Map Oriented Machine (MOM). The basic idea of
speeding up the algorithms is to parallelize the pro-
gram access by combinational hardware. Unlike
other solutions which pump the image data through
fixed processor arrays, we use fixed data in a map-
organized memory. A vari-sized cache is part of a
universal data sequencer. This data sequencer has a
simple but powerful instruction set. It is the univer-
sal part of the MOM. It can be moved across the im-
age in arbitrary directions for example following
any contour in the image or visiting all data by a self
moving video scan command. The machine also
permits the use of multiple data sequencers each fol-
lowing individual move commands, such as e.g. two
data sequencers moving in opposite directions in
aping systolic arrays.
The problem-oriented part is combinational so that
sequential mechanisms and the von Neumann bot-
tle-neck are avoided. A CAD environment to devel-
op applications supports "programming" this part. It
supports a variety of technologies ranging from
EEPROM, EPROM, ROM over (E)PLA, PALs to
semi- and full-custom solutions.

e) Results Received :

With our flexible hardware architecture the acceler-
ation factors of specialized hardware solutions can-
not be reached, but this factor is still between 100
and 10000 compared to conventional software pro-
grams. For example in a CAD application for VLSI
design a 1024 square pixels image can be processed

in one second performing mighty instructions such
as finding and marking errors. A substantial bene-
fit, however, is achieved in the flexibility of the sys-
tem. MOM is a compromise between special
hardware and computer use, not losing the advan-
tages of control side parallelism, but achieving more
generality and flexibility.
Due to the flexible move features not only image
preprocesses can be carried out, but also algorithms
for other applications , such as e.g. design rule
check, Lee routing, arithmetic problems, matrix op-
erations, systolic algorithms and many other appli-
cations where the data can be efficiently stored in a
two-dimensional memory.

Contents:

1. INTRODUCTION

2. ARCHITECTURE AND MODE OF OPERA-

TION

2.1. The Universal Part

2.2. The "Programmable" Part

3. GENERATION OF NEW POLUS

4. APPLICATIONS AND ALGORITHMS

4.1. Bit Manipulations and Set Operations

4.2. Image Preprocessing

4.3. Layout Processing

4.3.1. Design Rule Check Application for

MOM

4.3.2. Lee Routing Application

4.3.3. Circuit Extraction

4.4. Aping Matrix-Oriented Logic

4.5. Non-CAD Applications

4.5.1. Aping Systolic Arrays

4.6. Applications less feasible for MOM

5. EXTENSIONS AND FUTURE ASPECTS

6. CONCLUSIONS

7. LITERATURE

1. INTRODUCTION

To implement a data processing problem there are
two extreme classes of solutions: the classical soft-
ware solution running on a general purpose von
Neumann-style computer on one side, and the other
extreme would be a fully parallelized solution di-
rectly implemented on customized silicon. The clas-
sical solution is very slow since it is highly
sequential, whereas the fully parallelized solution

yields the highest throughput. In many cases the ful-
ly parallel solution would be an overkill with re-
spect to performance requirements. In many cases,
however, an acceleration by about one or two orders
of magnitude would be sufficient to meet the
throughput requirements.
To achieve an acceleration by far less than 6 orders
of magnitude (such as in [BHN85]) a much cheaper
solution would be feasible, which may be imple-
mented on the environment described in this paper.
The discussion of general-purpose vs. special-pur-
pose systems (e.g. see [SJGS85], [BLA84]) indi-
cate, that the greatest disadvantages of the fully
parallelized solutions are high design cost, very of-
ten too high with respect to market size (Figure 1.1).
The concept presented here is a semi von Neumann
computer, called Map Oriented Machine (MOM).
Its acceleration factor is not as high as in the silicon
solution, but anyhow it might be still up to between
100 and even 10000 in some cases, what is suffi-
cient for many tasks.

Figure 1.1:
General purpose versus
special purpose machines

In the system described here the data access is still
performed sequentially. However, the 'program
side' has been parallelized. This can be achieved in

a way, that instead of a program a problem-oriented
hardware is used (see Figure 1.2). The system may
be personalized in a highly mechanized way to be
adapted to a surprisingly wide range of applications.
This is supported by a CAD tool, so that the design
for a particular application is cheap. The analogon
to the von Neuman computer is: instead of a compil-
er a CAD tool accepting a relatively high language
is used to 'program' it (compare Figure 1.2).

Figure 1.2: MOM versus von Neumann Computer

In principle the system can solve almost any prob-
lem, which may be solved on a conventional com-
puter (see Table 1 for examples). But for non-time-
critical problems it may sometimes be better to use
a conventional general purpose computer, because
almost anybody knows to program it. However, if
MOM performs an algorithm which has a two-di-
mensional Map Oriented (MO) organisation, such
as e.g. in image processing, it is an efficient alterna-
tive to conventional software solutions: its program-
ming is map-oriented, which may be easily
visualized. The application's data structure is repre-
sented by a two-dimensional data map.

VLSI layout processing:

 design rule check, circuit
extraction, compaction [HNW84].

image preprocessing:

pattern recognition, pattern
matching, shrink, expand, contour following,
separation, colour mixing, set operations, etc.
[PU82].

arithmetic problems:

multiplication, addition, in-
cre- menting, decrementing, etc.

routing:

the Lee algorithm [LCY61, BS81].

ape systolic arrays:

 very wide variety of applica-
tions

matrix operations:

multiplication, conversion, etc.

convolution type algorithms:

FFT, convolutions,
and similar problems

ape map oriented logic:

 PLA, PAL, Weinberger
array, Kolte array, Lopez/Law Dense Gate Ma-
trix etc.

Table 1: examples of data processing problems fea-
sible for MOM execution.

2. ARCHITECTURE AND MODE OF
OPERATION

The basic architecture of the MOM is shown in Fig-
ure 2.1. It consists of a data memory, a vary size
cache, a problem oriented logic unit (POLU) and a
move control unit (MCU). All these parts are con-
nected via an interface to a host computer. The vary-
size cache, together with the MCU, form the "data
sequencer" (compare Figure 1.2 b). Also more than
one cache may be used, which be very useful (see
next section). The POLU is the problem-specific
section, whereas all other modules are parts of the
universal section of MOM.

Host Inter-
face POLUs

Address
generator

MCU
Move Control Unit

Pixel
Memo

ry

vary
size

Cache

Data Sequencer

sequential access parallel access

Figure 2.1: MOM Architecture

2.1. The Universal Part

The data sequencer in the MOM consists of the
vary-size cache and the move control unit (MCU,
see Figure 2.1). It is described in detail in [HIR85],
and its design is straight forward, that's why we do
not show any details within this paper. The cache is
a parallel accessible data store. Its contents is a copy
of the addressed part of the memory. It could be
compared with part of as the register file of a von
Neumann style computer. The address is generated
by the MCU, and, since the memory is organized in
a two dimensional way, there are two parts of the
address, the x part and the y part. Each pair address-
es a word in the memory, which is called a Òpix-
elÒ.The memory is patitioned into single-bit
organized memory plans. Thus the memory is a
multiple bit map memory, and, it is called "pixel
memory". When we are talking about "moving the
cache over the pixel memory" we mean that the
cache buffers the contents of a "window" , and after
a new address is selected the cache is loaded with
the contents of the next position of this window of
the memory. To do this there are two different move
primitives:

¥ jump absolute (x,y)
¥ jump relative (x,y).

The set of move instructions is derived from the von
Neumann concept, which makes the MOM concept
very universal. For example, if you would like to
meet all the contents in the memory you could start
in the lower left corner and step through it by single
steps to the right with the following primitives:

jump absolute (0,0)

 while not end of memory do

jump relative
(1,0)

endwhile.

Because of an auto-wrap-around at the end of one
memory line this is all you need to do. This mode is
called video scan and is depicted in Figure 2.2. To
recognize the end of a memory line and the end of

memory the size of the memory is set during an in-
itilization by storing the minima and maxima for
the x and y direction. The cache is variable in its size
(Figure 2.3) to adapt it to its application. It is con-
nected to the problem oriented logic unit (POLU)
which observes the cache's contents and delivers an
application specific result. So a read/modify/write
cycle is organized for cooperation between POLU
and cache on one side, and the pixel memory on the
other side.

Figure 2.2: Video Scan

Figure 2.3: Vary Size Cache

Not only two-dimensional memory organisations
may be used but also other multi-dimensional or-
ganisations. The difference to the von Neumann
Computer is that move primitives are used at data
side, and not at the program side and, that the mem-
ory-space is multi-dimensional, instead of being
one-dimensional. The data sequencer hardware of
MOM has been implemented such, that two funda-
mentally different moving strategies may be ap-
plied: schematic moves such as e.g. video scan, and

Y

X

Y-Maximum

Y-Minimum

X-Minimum X-Maximum

Pixel
Memory

auto-wrap-
around

data-depentant moving such as e.g. in curve follow-
ing. For the latter strategie POLU output is used to
control the MCU.

2.2. The "programmable" Part

The programmable part of the MOM is the POLU.
It does not hold a sequential program, but is a CAD-
generated special purpose hardware which is obvi-
ously faster than a sequential program. It also con-
sists of predefined hardware patterns from a CAD
library which can be used within the programmable
part and can be seen as some sort of "standard func-
tions". Some examples are:

¥ Arithmetic functions like addition, multiplica-
tion

¥ Image preprocessing such as shrink, expand
and set operations

By means of a select code one of these parts can be
selected (Figure 2.4), each performing a different
application by comparing the cache's contents with
a set of reference patterns. The result is a list of
numbers of the matching patterns. This list then is
interpreted, and as a result several instructions are
given. These are:

¥ the result pattern to be written back to the cache
which will be stored back to

 the memory at the next move.
¥ the next move command for the cache.
¥ the select application code.

Figure 2.4: Problem
oriented Logic Units

The "program" for the MOM therefore is stored in
the reference pattern set and so this is the part which
has to be programmed for a new application (see
section 3). This "program" can be stored in ROM,
PLA, PAL, gate arrays, other semi custom or full
custom devices or in mixtures of all these. For fast
turn-around prototyping EPROM, PROM, etc. may
be used. Each application is performed in several
cycles. One cycle consists of (compare Figure 2.5):

¥ load the cache
¥ compare the cache with the selected reference

patterns in the POLU
¥ store result pattern in cache
¥ select application
¥ set cache size

Reference
Pattern

Set

POLU i

Inter-
preter

POLU

POLU

POLU

1

2

i

From
Cache

Instructions

Application
select

¥ set memory area size
¥ move cache (= store cache to memory and load

it with the new addressed data)

 Figure 2.5: MOM Cycle

There are "no operations" for each cycle part so not
all of these are performed at any cycle. For
example different operations can be performed at
the same position in the memory (no cache move-
ment) or the cache will be moved and its contents
remains unchanged. Before the program can start
the host must set up the MOM. This is:

¥ preset the 4 limit registers for the memory
¥ load the bit map memory

¥ select a initial cache size
¥ select a initial application
¥ move the cache to a initial position

PIXEL
MEMORY

CACHE

POLU

MCU

one pixel

parallel pixel
access

instructions

address

Move
commands

3. GENERATION OF NEW POLUS

To program the MOM a new set of reference pat-
terns and a new interpreter has to be constructed. A
CAD-Toolbox supports this. There is a comfortable
reference pattern editor and a translator to generate
the program code to store these in RAMs or ROMs.
The way an algorithm is constructed for MOM is
different from programming a von Neumann com-
puter. It is important to arrange the data in the pixel
memory in an efficient way. Then we have to find
local operations to be performed on this data. This
will be clarified with some examples in the next sec-
tion. Local data can be accessed parallel that means
it can be observed, compared and changed very
quickly, so this is what can be spent in large num-
bers in opposite to a von Neumann computer, where
every comparison of and access to data costs a lot.
Sometimes it is neccesary to hold the same data in
many copies in the memory to be able to use just lo-
cal operations, what can be accepted because of de-
creasing memory costs. After the algorithm is found
it can be installed on MOM with the help of some
CAD-tools.

4. APPLICATIONS AND ALGORITHMS

The MOM is capable to execute almost any kind of
data processing. Anyhow there are problems more
or less feasible for MOM execution. Groups of
problems with their algorithms, which show the
power of MOM are described as are problems, that
can be solved, but where MOM is less powerful
than an ordinary von Neumann machine [VNEU61]
with a mighty ALU.

4.1. Bit Manipulations and Set Operations

Since the pixel memory is a multilayer bit map it is
obviously an excellent representation of two-di-
mensional images. This fact provides the first class
of processes suitable for MOM. The simplest prob-
lems in this class are bit operations (boolean instruc-
tions between different layers in a pixel) and set
operations. Sets can be stored as areas of set bit in
different pixel layers, and boolean instructions are

applied to compute functions like 'contained', 'inter-
section', 'union' or 'difference'. These operations re-
quire just an one-pixel cache to be moved over the
memory. The movement strategy is to visit each
pixel exactly once and to match it with the set of ref-
erence patterns. This is done by a video scan, i.e. the
cache is moved from the left bottom corner, row by
row, to the right top corner of the pixel memory.
Each reference pattern represents a possible input-
instance of the entire boolean operation, the corre-
sponding result pattern represents the result of the
operation applied to the input-instance. Figure 4.1
gives an example of a set operation.

Figure 4.1: Set operation 'intersection'

4.2. Image Preprocessing

In the field of image preprocessing these bit and set
operations can be used to mix colours stored in dif-
ferent layers or to make colours invisible. Other im-
age preprocesses need the evaluation of
neighbourhood information. To meet this require-
ment a bigger cache is used. In most cases a 3-by-3
pixel wide cache is sufficient to get local informa-
tions. Shrinking and expansion of image structures
are examples for this type of applications. To ex-
pand an object it is necessary to know whether the
neighbour pixel is already blocked or whether it is
still free to expand the object (see Figure 4.2). The
two reference patterns and their result patterns are
the first two encountered when performing a video
scan from the left bottom to the right top of the pixel
memory section in the example of Figure 4.2. Natu-
rally there are more different patterns necessary to
provide a complete expansion as shown in the ex-
ample.

Pixel memory with
two overlapping

sets

Pixel memory with
intersection of the

sets

Cache with
reference pattern

Cache with
result pattern

Figure 4.2: Expansion of an object (an image pre-
processing example)

A variation of the expansion algorithm could be not
to perform a video scan movement strategy, but to
follow the outline of the object and add new pixels
at the edge of the existing object. This explains that
problems can be realized in different MOM algo-
rithms, either in different reference patterns or in
different movement strategies or in both.

4.3. Layout Processing

Another suitable field for MOM executions is VLSI
layout processing. Since layout can be excellently
stored in multi-coloured bit maps the ability to solve
problems by scanning a local window over the lay-
out data is obvious. Classical problems feasible for
MOM are design rule check, Lee routing or circuit
extraction.

4.3.1. Design Rule Check Application of
 MOM

To carry out a design rule check of the layout of in-
tegrated circuits it is necessary to have a cache,
which is one pixel larger than the largest design
rule, e.g. if the rule "minimum metal spacing is three
lambda" has the biggest lambda factor of all design
rules, the cache has to have a size of 4-by-4 pixels
(one pixel is equivalent to one lambda unit) in order
to cover this rule, and, at least one of its direct
neighbour pixels [HNW84]. The entire design rule
check is done by a single video scan over the layout.
The reference patterns represent all possible design

pixel memory
with an object

pixel memory
with expanded

object

cache with
reference pattern

cache with
result pattern

rule violations. A match to one or more of these pat-
terns indicates a violation. For all reference patterns
there is only one result pattern which directly marks
the location of a design rule violation in using a spe-
cial error layer at the position where a reference pat-
tern has matched. Since design rules are locally
bounded only relatively few reference patterns are
needed. For the Mead-&-Conway design rules
[MECO80] only 258 patterns are needed for exam-
ple. Figure 4.3 shows an example of a design rule
violation and its detection by a reference pattern.
Clearly only orthogonal layout structures can be
processed, because the underlying pixel memory al-
lows only orthogonal structures to be stored.

Figure 4.3: Design rule check example

4.3.2. Lee Routing Application

Lee routing [LCY61] is another MOM application
example in CAD for VLSI. Starting from a specially
marked pixel (the start cell), the shortest path to a
target cell is searched by propagating arrows from
the start cell, thus propagating a wavefront to the
target cell. By backtracking the path, back along the
arrows, the shortest connection between the two
points is achieved. This routing process requires the
combination of different sets of reference patterns
and different movement strategies [VEL86]. First a
single pixel cache is video-scanned over the image
to find the start cell. The waveform expansion of ar-
rows requires a 3-by-3 pixel cache to get informa-
tion about arrows positioned in neighbour pixels.

MOS transistor
with insufficient

poly overlap

MOS transistor
with design rule
violation mark

result patternreference pattern

poly diffusion channel don't care

The movements of the cache are somewhat spiralic
outward from the start cell until a certain matched
reference pattern indicates that the target cell is
found. In the third part of the routing a single pixel
cache follows the direction of the arrows back from
the target to the start cell to complete the routing
process. Altogether only 33 reference patterns and
33 result patterns are needed for the Lee routing al-
gorithm with MOM. Figure 4.4 shows a snapshot
during the waveform expansion. The movements
are anticlockwise. The two reference patterns match
at the numbered positions (1, 2) in the example. The
waveform has the shape of a growing diamond until
the target cell is reached (Figure 4.5).

Figure 4.4: Lee routing example (snapshots)

Figure 4.5: Lee routing example (waveform
scheme illustration)

S

1

2

1

S 2

S
1

S
1

S 2S 2

two steps during
the waveform

the two matching
reference pattern and
their corresponding

result pattern

4.3.3. Circuit Extraction

MOM can also perform a circuit extraction by trac-
ing layout structures with a 2-x-2 cache to receive a
netlist of the microchip [NEB85]. The data structure
to hold this netlist and the capacitance of all nodes
have to be stored outside the MOM architecture.
MOM provides the entries for this data structure.

4.4. Aping Matrix-Oriented Logic

Matrix-oriented Logic (MOL, see [GHHO86]) are
logic circuits which may be specified by means of a
personality matrix, e.g. PLA, Weinberger array
[WEI67], dense gate matrix [LOLA80] and others.
MOM can be used to simulate and verify this sym-
bolic description given by the personality matrix
which is stored in the pixel memory. By means of
the AND matrix of a small PLA the principle to ape
matrix-oriented logic is illustrated (Figure 4.6).
Each function in the AND matrix is evaluated by
one scan, left to right, over this entire row of the per-
sonality matrix using a 2-by-1 pixel cache. The re-
sult layer is completely preset with '1' at the
beginning of the execution. In each scan step the re-
sult is passed on to the right neighbour in the result
layer. If after the scan the '1' is still present at the
right edge of the row, the corresponding function in
the PLA is true.

Figure 4.6: Aping a PLA

Other matrix-oriented logics can be processed in the
same way though the reference patterns and result
patterns get more sophisticated.

4.5. Non-CAD Applications

Driven by our own processing needs we mainly
used the MOM machine for accelerator applications
in CAD for VLSI. However, there are many other
feasible applications of the MOM other than in
VLSI design. Especially, when MOM is working in
twin-cache mode (or sometimes in other multiple-
cache mode) all types of convolution-like process-
ing can be directly mapped onto the multi-dimen-
sional MOM address space. Since the MOM
concept is an excellent resource for low-cost aping
of systolic arrays.

4.5.1. Aping systolic arrays

Systolic arrays are widely used to speed up algo-
rithms by using hardware [KUN79], [FOKU80].
Generally an array or a matrix of uniform process-
ing elements (PE's) are linked together which are
able to transfer information to their neighbour
processing elements. Data thus is pulsed through
these PE's and a pipelined processing is achieved,
such that all PE's compute their current data paral-
lel. It is possible to ape these systolic arrays with the
MOM machine. The cache substitutes one PE, the
scan of the cache substitutes the systolic pulse of the
data through the PE. Reference patterns and result
patterns have to perform the same function as the PE
of the systolic array does. Figure 4.7 illustrates the
transfer of the problem from systolic arrays onto a
MOM.

Figure 4.7: Aping of systolic arrays

That's why MOM can also be used to ape systolic
arrays for "real applications", whenever the high
performance of a systolic array is not needed, as
well as to provide an environment for the develop-
ment of systolic arrays, or, for programming such
systolic arrays, which can be programmed or can be
personalized in another way. In the latter applica-
tion MOM would be used as a CAD tool (like a pro-
grammable systolic array compiler, or a systolic
array compiler) within a toolbox for the design of
systolic architectures.
So, as a matter of fact, everything which fits onto a
systolic array implementation can be directly
mapped onto the MOM system. That's why also the
following application areas [KUN82] are feasible
for using MOM resources.

Signal and image processing:
¥ FIR, IIR filtering, 1-D convolution
¥ 2-D convolution and correlation
¥ discrete Fourier transformation
¥ interpolation

PE PE PE PE
Data-in

Data-out

Systolic Array:

Data in pixel memory

moving Cache

MOM:

a) Single Cache

Data fixed
Window moving

Data moving

b) Multiple Caches

PE PE PE PE

Data-in Data-out

moving Cache 1

moving Cache 2

Data-inData-out

Data in pixel memory

¥ 1-D and 2-D median filtering
¥ geometric warping

Matrix arithmetic:
¥ matrix-vector multiplication
¥ matrix-matrix multiplication
¥ matrix triangularization
¥ QR decomposition
¥ solution of triangular systems

Non-numeric applications:
¥ data structures (sorting, searching)
¥ dynamic programming
¥ graph algortihms (transitive closure, con-

nected components)
¥ language recognition (string matching,

regular expression)
¥ relational data-base operations

For references to these application areas see
[KUN82]. This list shows that the MOM concept
has a very wide range of applications. Especially
those applications which are based on repetitive
computations on large sets of data are feasible for
MOM.

4.6. Applications less feasible for MOM

MOM is inferior to von Neumann-style machines
when this machine is able to compute the desired
task in only one or a few execution steps with its
ALU. Besides such applications which need huge
dynamic intermediate memory allocations often are
more suitable for von Neumann machines. Never-
theless there could be the possibility to run MOM as
an accelerating extension of a von Neumann ma-
chine with this von Neumann machine as the host of
MOM.

5. EXTENSIONS AND FUTURE ASPECTS

To cover a wider area of data processing problems
the MOM having been introduced here, can be ex-
tended to have two or more caches running simulta-
neously. This leads to two data selections at a time,

which can be interleaved and it leads to two parallel
data accesses. E.g. to multiply two matrices one
cache scans the first matrix row by row, the second
cache the second matrix column by column. The
two caches exchange information via the POLU to
provide a multiplication of the two matrices.
A main topic of future work would be to design a
high level language as an aid to program MOM eas-
ily, safely and quickly. Such a language should in-
clude features for the description of the shape of
reference patterns and result patterns as well as the
behavioural description of the cache movements.
Via existing CAD-tools and a language interpreter
the described algorithms could be transformed into
new POLUs to extend MOM.
Since the cost for primary memory is decreasing
more and more, it will be affordable soon to have a
main memory of a gigabyte or more. Thus very
large data maps could be kept in primary memory
(the pixel memory). Also very large pixels could be
feasible, such as using pixel word formats of up to a
hundred bits or more. The swapping rates will be re-
duced drastically. This is a good development also
for MOM applications.

6. CONCLUSIONS

With the map oriented machine MOM a new ap-
proach to speed up algorithms has been introduced.
MOM combines the flexibility advantages of von
Neumann-type machines with the speed advantages
of special hardware solutions. MOM is slower but
more universal than fully customized special hard-
ware, however it is more flexible, i.e. faster than a
von Neumann-type machine, but less general in its
usage. The MOM has been developed at Kaiserslau-
tern University, F.R.G., where a prototype, which
has been personalized for a design rule check appli-
cation demo, is running successfully. In addition to
this 'real' MOM, a software simulation system for
the map-oriented machine has been implemented,
which also serves as a MOM application develop-
ment environment and CAD toolbox. This software
version of MOM is called the PISA program
[HNW84]. The speed benefit in using MOM varies

from application to application. A dramatic im-
provement has been achieved in design rule check
applications. E.g. the check of an one million square
lambda NMOS design with Mead-&-Conway de-
sign rules takes 1 second, compared to minutes or
hours in using super mini computers.
We have illustrated a flexible computing resource
and accelerator environment concept for a wide va-
riety of applications. It may be used for CAD appli-
cations, such as e.g. in VLSI design and
verification. It may also be used for 'real' data
processing in a wide variety of applications. A lot of
work has to be done to explore application method-
ologies of this new type of computational resource.

7. LITERATURE

[BHN85]K. Bastian, R. Hartenstein, W. Nebel:

VLSI-Algorithmen: Innovative Schaltungstechnik
statt Software - Shuffle Sort

, VDI-Berichte Nr. 550,
1985

[BLA84]T. Blank:

A Survey of Hardware Accelera-
tors used in Computer-Aided Design

, IEEE Design
and Test of Computers, August 1984

[BS81] M.A. Breuer and K. Shamsa:

 A Hardware
Router.

In: Journal Of Digital Systems, Vol.4, Is-
sue 4, 1981.

[FOKU80]M.J. Foster, H.T. Kung:

The Design of
Special-Purpose VLSI Chips

, Computer, January
1980

[GHHO86]R. Gebhardt, R. Hartenstein, R. Hauck,
D. Oelcke:

Functional Extraktion from Personality
Matrixes of MOL (Matrix Oriented Logic) Circuits

,
report, Kaiserslautern University, 1986

[HIR85]A. Hirschbiel:

PISA Maschine, Eine spe-
zielle Hardware f�r pixel orientierte Bildverarbei-
tung

, report, Kaiserslautern University, 1985

[HNW84]R.W. Hartenstein, R. Hauck, A.G. Hir-
schbiel, W. Nebel, M. Weber :

PISA, A CAD Pack-
age And Special Hardware For Pixel-Oriented
Layout Analysis.

In: ICCAD - 84, Digest Of Techni-
cal Papers, Santa Clara, 1984.

[KUN79]H.T. Kung:

Let's Design Algorithms for
VLSI

, Caltech Conference on VLSI, 1979

[KUN82]H.T. Kung:

Why Systolic Architectures?

,
Computer, January 1982

[LCY61]C.Y. Lee:

An Algorithm For Path Connec-
tions And Its Applications.

 In: IEEE Trans. on Elec-
tronic Computers, vol EC-10, pp. 346-365, Sep.
1961.

[LOLA80]A. Lopez, H. Law:

A Dense Gate Matrix
Layout Method for MOS VLSI

, IEEE Journal of sol-
id-state circuits, Vol. SC-15, No. 4, Aug. 1980

[MECO80]C. Mead, L. Conway:

Introduction to
VLSI Systems

, Addison-Wesley, 1980.

[NEB85]W. Nebel:

CAD-Entwurfskontrolle in der
Mikroelektronik

 (in german), B.G.Teubner, 1985

[PU82]K. Preston jr., L. Uhr:

Multicomputers and
Image Processing.

Academic Press, 1982.

[SJGS85]L. Snyder, L. H. Jamieson, D. B. Gannon
and H.J. Siegel:

Algorithmically Specialized Paral-
lel Computers.

 Academic Press, 1985.

[VEL86]I. Velten:

Implementierung des Lee-Algo-
rithmus auf MOM

 (in german), report, Kaiserslau-
tern University, 1986

[VNEU61]J. von Neumann:

 Collected Works, Vol-
ume 5

, Pergamon Press, 1961.

[WEI67]A. Weinberger:

Large Scale Integration of
MOS Complex Logic: A Layout Method

, IEEE Jour-
nal of Solid-State Circuits, Vol. SC-2, No. 4, Dec.
1967

d) References :

[BAT80]K. E. Batcher:

Design of a massively par-
allel processor,

 IEEE Trans. Comput. C-
29 836-840, 1980.

[BHN85]K. Bastian, R. Hartenstein, W. Nebel:

VLSI-Algorithmen: Innovative
Schaltungstechnik statt Software - Shuffle
Sort

, VDI-Berichte Nr. 550, 1985
[BLA84]T. Blank:

A Survey of Hardware Acceler-
ators used in Computer-Aided Design

,
IEEE Design and Test of Computers, Au-
gust 1984

[BS81] M.A. Breuer and K. Shamsa:

 A Hardware
Router.

In: Journal Of Digital Systems,
Vol.4, Issue 4, 1981.

[FOKU80]M.J. Foster, H.T. Kung:

The Design of
Special-Purpose VLSI Chips

, Computer,
January 1980

[HIR85]A. Hirschbiel:

PISA Maschine, Eine spe-
zielle Hardware f�r pixel orientierte Bild-
verarbeitung

, report, Kaiserslautern
University, 1985

[HNW84]R.W. Hartenstein, R. Hauck, A.G. Hir-
schbiel, W. Nebel, M. Weber :

PISA, A
CAD Package And Special Hardware For
Pixel-Oriented Layout Analysis.

In: IC-
CAD - 84, Digest Of Technical Papers,
Santa Clara, 1984.

[KUN79]H.T. Kung:

Let's Design Algorithms for
VLSI

, Caltech Conference on VLSI, 1979
[KUN82]H.T. Kung:

Why Systolic Architectures?

,
Computer, January 1982

[LCY61]C.Y. Lee:

An Algorithm For Path Con-
nections And Its Applications.

 In: IEEE
Trans. on Electronic Computers, vol EC-
10, pp. 346-365, Sep. 1961.

[MECO80]C. Mead, L. Conway:

Introduction to
VLSI Systems

, Addison-Wesley, 1980.
[NEB85]W. Nebel:

CAD-Entwurfskontrolle in der
Mikroelektronik

 (in german), B.G.Teubn-
er, 1985

[PU82]K. Preston jr., L. Uhr:

Multicomputers and
Image Processing.

Academic Press,
1982.

[SJGS85]L. Snyder, L. H. Jamieson, D. B. Gan-
non and H.J. Siegel:

Algorithmically Spe-
cialized Parallel Computers.

 Academic
Press, 1985.

[STER81]S. R. Sternberg,

Parallel architectures
for image processing,

 in "Real/Time Par-

allel Computers" (M. Onoe, K. Preston,
Jr., and A. Rosenfeld, eds.) pp. 347-359.
Plenum, New York 1981.

