
1

The von Neumann Syndrome*

Reiner Hartenstein, TU Kaiserslautern, http://hartenstein.de

Abstract. Because of high energy consumption our computer-based infrastructure may become unaffordable
- without reinventing the entire computing discipline, also due to cope with the manycore programming crisis.
The paper highlights facts, trends, and a roadmap to by-pass this crisis and to reach new horizons.

The term von Neumann syndrome has been coined by C. V. „RAM“ Ramamoorthy
in reply to my talk at San Diego [1]. Most problems are caused by the Energy Wall,
the Memory Wall, and the Education Wall. Still main focus of CS education, the von
Neumann (vN) basic common model [2] lost its dominance decades ago [3], also
having been criticized for overhead [5] [6]: its principles are fundamentally wrong,
since data processing targets data streams - not instruction streams. In industry it has been replaced by a
cooperation of vN CPU and non-VN accelerators (fig. 1). To-day, most MIPS equivalents are running on
FPGAs [7] (Field-Programmable Gate Arrays [8]: the fastest growing segment of the semiconductor market),
where the microprocessor has become the tail wagging the dog and the basic accelerator model is data-stream-

based - not instruction-stream-based. However, most published
documentations of such symbiotic systems use a confusing and/or selfish
terminology and are structured like stirred up Spaghetti Bolognese, not at
all straightening out an underlying twin paradigm common basic model.

The most disruptive revolution since the mainframe:
it’s Reconfigurable Computing (RC) [9] [10] [12] [13] [14]
[15], mostly FPGA-based. Its pervasiveness is obvious. It
comes with a second machine paradigm: the anti-machine,
counterpart of vN [16] [17]. Meanwhile RC has become
mainstream, not only in embedded systems. More than 170
international conference series deal with RC and its
applications [18]. Not only in digital consumer electronics
getting momentum from market convergence, RC is the key
for future architectures: field-programmability is a must [19].
Since 2006, RC is also a hot spot in supercomputing
[20] [21]: The personal supercomputer is near [22].
The 1st Reconfigurable Computing Paradox. From
software to configware migrations, speedup factors by up tp 4 orders of magnitude (e.g. 3000 in image processing
[24] and 38514 in DES breaking [25]) have been published (fig. 2), although FPGA technology parameters are
very bad [10]. The effective integration density of a large FPGA is tremendously behind the Gordon Moore curve

(fig. 3). Compared to speedup the discrepancy is up to 8 orders of magnitude.
What explains such excellent results by such a bad technology? (Instead of
„simple FPGAs“ (fig. 3) some more recent projects from fig. 2 used platform
FPGAs having a better integration density by including a domain-specific

mix of hardwired module blocks embedded in FPGA fabrics.) Part of the explanation is the Gordon Moore gap.
The Moore curve does not show the actual computational density (effective MIPS per area unit) of microprocessor
chips which has drastically decreased with the sequence of generations [10] [11]. The discrepancy also indicates,

Arthur Schopenhauer: "Approximately every 30 years, we declare the scientific, literary and artistic spirit
of the age bankrupt. In time, the accumulation of errors collapses under the absurdity of its own weight."
RH: "Mesmerized by the Gordon Moore Curve, we in CS slowed down our learning curve. Finally, after 60
years, we are witnessing the spirit from the Mainframe Age collapsing under the von Neumann syndrome.“

vN
CPUs

non-vN
accelerators

Fig. 1. Basic model re-
placing von Neuman (vN)

FPGA

1980 1990 2000 2010

108

106

103

100

sp
ee

d-
up

 f
ac

to
r

Fig. 2. Speedup by software to configware migration.

DPLA

coarse-grained*

x 2 /yr

*) prediction

DSP & wireless
biology
multimedia
MoM xputer
crypto

Remark: some projects
used platform FPGAs

1980 1990 2000 2010

109

106

103

100

>10,000

Fig. 3. Simple FPGA effective integration density*.

effective
density

tr
an

si
st

or
s

/ m
ic

ro
ch

ip

FPGA routed

reason: routing congestion
reason: reconfigurability

 overhead

FPGA logical

Moore curve

(microprocessor)

FPGA physical
reason: wiring overhead

*) no platform FPGAs !

[Andy DeHon]

1980 1990 2000 2010

109

106

103

100

tra
ns

ist
or

s /
 m

icr
oc

hi
p

Fig. 4. Area efficiency of coarse-grained RC.

other advantage:
very compact
configuration code

Moore curve rDPA logical

(FPGA routed)
(microprocessor)

[Hartenstein]

von Neumann computing:
will it be still affordable
throughout next decade?

(slightly modified version)

Energy Wall, Memory Wall
and Education Wall fuel the
von Neumann syndrome.
*) invited paper, Stamatis Vassiliadis Symposium „The Futu
re of Computing“, Delft, The Netherlands, Sept. 28, 2007

2

that our common models and implementation principles are fundamentally wrong: the von Neumann syndrome.
Following the vN-centric spirit from the mainframe age in using technology of the silicon age we are navigating
with a completely wrong road map. We need to think out of the box. Reconfigurable Computing is leading us to
new roads we need to escape from the vN paradigm trap,tunnel of horror. The M’soft [instruction-stream-based]
programming model for upcoming manycore microprocessors has been predicted to be 10 years off [23]. For
an earlier solution we need a twin paradigm approach: instruction-
stream-based solutions coordinated with data-stream-based antimachine
concepts. Each core should have the option to run as a vN CPU, or, as an
antimachine’s DPU (DataPath Unit: has no program counter), s. fig. 5.

Missing the point: because of tunnel view. For a hammer everything looks
like a nail. For some mathematicians many phenomena look like an algebraic
problem. Around 1980 it has been found out, that systolic arrays are beautiful
schemes to solve complex algebraic problems [26] [27] [28], and, have come
up with an excellent definition of the term data stream - nicely illustrated by a
time/space schematics (fig. 6). Their several synthesis methods to derive the
pipe network of a systolic architecture from a mathematical formula has been,
of course, algebraic. Since this means linear projection yielding only uniform

linear pipes, these synthesis methods have supported only applications with strictly regular data dependencies,
which is a far-ranging limitation. It took almost 15 years, to overcome this limitation, which stems from the tunnel
view of the algebraic perspective. In 1995 Rainer Kress replaced their algebraic synthesis methods by simulated
annealing [29], which in fact, means a generalization of the systolic array. The resulting supersystolic array
methodology supports all kinds of irregular pipe schemes, including (not only) spiral, zigzag and even much more
wild schemes, even also with fork and join features. By the way, the original
conference series on systolic arrays [30] [31] extended its scope [32] [33].

Anti machine: delayed by paradigm trap. Who
organizes the data streams to run systolic arrays? The
reply of that systolic array scene around 1980 has been:
„this is not our job. [This is the job of hardware people.]“
Since computing resources without a sequencer are not a
computational „machine“ in the sense of a machine
paradigm, those mathematicians have missed to invent the
new machine paradigm of the antimachine [34] [35] [36] -
the counterpart of the von Neumann machine. This
„transdisciplinary“ break-through had been delayed by
their reluctance due to their algebraic paradigm trap. Each
individual data stream is generated by an auto-sequencing
memory (ASM) block including a data counter. For the
array example in fig. 6 we need 12 ASMs, 6 of them as
data stream sources, and 6 of them as data stream sinks
(fig. 7). So this machine has 12 data counters in total.
Compared to von Neumann the main differences of the

antimachine are: (mostly multiple) data counters, co-located with memory - in contrast to vN’s single
program counter, co-located with the single datapath unit (DPU). The anti machine does not have a CPU:
it only has (mostly multiple) DPUs, i. e. without program counters. (Datastreams ≠ dataflow. Note: only
use the term datastreams, but avoid to use the obsolete term dataflow! [37]) The two machine paradigms
are twins, because to express sequencing the same language primitives are used (fig. 7) [38]. Both
paradigms have the same syntax rules. Their sequencers use the same circuity. Their semantics is only
slightly different. The only external asymmetry is the fact, that data stream loops can be internally parallel
at this level, whereas instruction stream loops cannot. A von
Neumann machine can have only a single DPU (inside the
CPU), whereas an antimachine can have multiple DPUs.
The von Neumann tunnel of horror. The vN paradigm is preferred by rationally bounded humans for
reasons of Denkoekonomie ([Ernst Mach] [39]). Scarce resources (intelligence) are substituted as soon
as possible. vN's beneficiaries Intel and Microsoft gain from the fact that the programmer does not need
to think a lot about many difficult aspects of computing [40]. However, our von-Neumann-centric cyber-
infrastructure is a tunnel of horror: astronomic code sizes cause a massive array of overhead phenomena,
due to the von Neumann syndrome. 1000 processors running in parallel means that 1000 instruction
streams with all their overhead phenomena yield a drastic programmer productivity decline. [41]: „In
practice we are limited to a few instructions per clock cycle.“ Traditional software engineering problems
are now topped by the manycore programming crisis. The human wave approach toward improving
components not being the main system bottlenecks to come up with a variety of speculative and other
indeterministic methodologies, recently topped by transactional memory efforts. A huge waste of
researcher capacity to obtain mostly marginal results: the mountain screamed and bore a mouse. Also

type of PU
(processing

unit)
instruction
sequencer
included?

execution
triggered

by
CPU yes instruction

fetch
DPU or
rDPU no arrival of

data*

Figure 5. Duality of paradigms
von Neumann vs. antimachine

*) transport-triggered

Figure 6.
Data stream
definition (Flowware).

x
x
x

x
x
x

x
x
x

|
||

x
x
x

x
x
x

x
x
x

|
||

x x
x

x

x
x

x x

x

- -

-
xx
x

x

x
x

xx

x

--

-
-
-

-

-
-

-

-
-

-

|
|
|

|
|
|

|
|
|

flowware

DPA

time

tim
e

time time

flowware

port #

port #

port #

Flowware
schedules, which

data item will
appear at which

port of the DPA at
which time

time / space
visualization
introduced by
systolic arrays

(DataPath Array)

von Neumann syndrome:
an important strategic issue
- at least at national level.

We must reinvent computing [41].

„data stream“ ≠ „dataflow“.
(invited paper in:) K. Bertels et al. (ed.): The Future of Computing - Essays in memory of Stamatis Vassiliadis; TU Delft, 2007
ISBN: 978-90-807957-3-0 NUR 958

3

multithreading is speculative and is not the silver bullet. Overhead phenomena also lead to
microprocessor chips featuring a highly disappointing computational density [11]. This is only an
incomplete list of indications to the von Neumann syndrome. The table in fig 9 lists some of the von
Neumann overhead phenomena which can be avoided by software to configware migration, i. e. by RC.

A new paradigm cannot be avoided. Most researchers and
implementers in HPC are reluctant to go for a paradigm
extension. This is (not only) illustrated by following
panelists’ statements from SC06. „It is feared that domain
scientists will have to learn how to design hardware. Can
we avoid the need for hardware design skills and
understanding?“ [42], „A leap too far for the existing HPC
community“ [42]. Trying to avoid paradigm revisions
leads to a completely wrong road map. The following
statement sounds somewhat better: „We need a bridge strategy
by developing advanced tools for training the software
community to think in fine grained parallelism and pipelining
techniques.“ [42]. Such a bridge strategy also makes sense,
because of the manycore programming crisis running in
parallel with the break-through of Reconfigurable Computing.

Everything we know is wrong. The vN syndrome
reminds of a Freudian repression of material parallelism. RC
is more equivalent to our natural unconscious intelligence.
However, the revolution is painful, since consciously parallel thinking is hard, is rarely systematically trained,
and is badly supported by established tools [40]. Since parallelism now becomes increasingly ubiquitous,
HPC should be able to exploit and extend mainstream programming languages, operating systems,
development tools, libraries, and even applications intended for smaller scale systems [41]. Also grid
computing requests delivering its functionality through far simpler programming interfaces: „The Grid is
sometimes its own worst enemy. Grid computing misses the point.“ [43] [44]: "If we want to enable new
science then we need to empower the user." To make it much easier for developers to implement parallel software
and systems, we urgently must reinvent not only computing but also the computing profession [41]. Everything we
know is wrong [46]. This requires a paradigm revision for execution and programming models. [47].

Twin paradigms approach is needed. The
von Neumann syndrome tells us, that instead of
physical limits, fundamental misconceptions of
algorithmic complexity theory limit the progress
and will necessitate new breakthroughs. Not
processing is costly, but moving and storing
data and messages. We’ve to completely re-
think basic assumptions behind computing.
Moving data (at run time) in the vN domain turns

for the antimachine domain into (at compile time) moving the locality of execution by pipe network synthesis
(line 7 and 8 in fig. 8). Another example are reconfigurable address generators moving address computation
overhead (lines 9 and 10 in fig. 9) from run time to compile time [48] [49] [50]. Supporting compilation
techniques, also featuring automatic software / configware partitioning, have been demonstrated, accepting C
language sources [51] [52] [53] [54], and mathematical formula input sources [55]. Cores of manycore systems
should be heterogeneous, also including reconfigurable cores like FPGAs
etc. Because we cannot afford to discard non-von-Neumann accelerators,
we have to support a twin paradigm approach: a well and clearly organized
dual model supporting both, von Neumann and the antimachine paradigm.
The 2nd Reconfigurable Computing Paradox. Compared to hardwired accelerators, FPGAs have bad
technology features, such as slow clock frequency, and, higher energy and space requirements. Many publications
report speedup factors obtained from software to configware migration (onto FPGAs [7] [10]) - up to a factor of
6000 (fig. 2). But only one of those publications reports slashing the electricity bill and space needed down to less

(r)DPA

A
SM

A
SM

A
SM

A
SM

A
SM

A
SM

GAG
RAMdata

counter

ASM
Figure 7.
Generating
data streams
to/from
distributed
memory.

ASM = Auto-
Sequencing Memory
GAG = Generic
Address Generator

compiled
pipe network

A
S

M
A

S
M

A
S

M
A

S
M

A
S

M
A

S
M

ASM
ASM
ASM
ASM
ASM

ASM

ASM
ASM
ASM

ASM
ASM
ASMASM

ASM
ASM

instruction stream languages data stream languages

sequencing
primitives

read next instruction
goto (instruction address)
jump (to instruction address)
instruction loop
loop nesting
escapes
instruction stream branching
no loops internally parallel

read next data item
goto (data address)
jump (to data address)
data loop
data loop nesting
escapes
data stream branching
yes: loops int’y parallel

Figure 7. Why vN and antimachine language paradigms are twins.

Figure 8. von Neumann vs. Anti machine: Partitioning scheme.

feature von Neumann machine hardwired
antimachine (e.g. [56])

reconfigurable
antimachine

1 machine code schedules: instruction stream data stream(s)
2 # of programming sources 1 2
3 programming source 1* none configware
4 programming source 2** software flowware
5 (source 2) sequenced by: 1 program counter 1 or more data counter(s)
6 counter co-located with: DPU (data path) „CPU“ memory block(s): „ASM“
7 inter PU communication: via common memory piped through
8 data meet PU (processing unit) move data at run time move execution locality at compile time

**) for scheduling
*) to set up resources

Reconfigurable Computing means:
no instruction fetch at run time.

Also for converging consumer
electronics markets field-
programmability is a must [19]
(invited paper in:) K. Bertels et al. (ed.): The Future of Computing - Essays in memory of Stamatis Vassiliadis; TU Delft, 2007
ISBN: 978-90-807957-3-0 NUR 958

4

than 10 percent, for a speedup factor of only 17 [45]. This means
a discrepancy factor of substantially more than 100 in terms of
Watts per effective MIPS. The (semi-RC) GRAPE machine
shows, that the electricity consumption per MIPS might go down
to about one tenth of a percent [64] [65] [66]. A recent talk reports a power factor of 3439 [25] for a 38514x
speedup factor at DES breaking, also causing a massive impact on security overhead: a Megabit key needed soon?
The von Neumann syndrome: the Energy Wall. The electricity consumption of computers has been mainly
ignored (fig. 10). But recently a discussion has been kicked off within the HPC scene [21]. The energy
consumption of future supercomputers is heading for astronomic dimensions. The discussion now also includes
server farms. Google’s annual electricity bill amounts to 50 million US-Dollars - more than the value of its
computing equipment. And, about 25% of Amsterdam’s electricity consumption goes into server farms. Servers
in New York city occupy a quarter square kilometer of building floor area. A study predicts, that - from currently
more than 20% - by the year 2020 the electricity consumption of the entire cyber infrastructure in the US will
amount to 35 - 50% of the US electricity production (fig. 10) [58]. The crude oil price development (fig. 11)
and market predictions (fig. 12) lead to the question, wether von Neumann computing will be affordable in
the future. Conclusion: the von Neumann syndrome is a strategic issue, at least at national level.

The Memory Wall. Dave Patterson’s law
shows the memory chip bandwidth orders of
magnitude behind microprocessor clock
frequency: main reason of the tremendous
instruction stream overhead. Because of
usual vN-based software code size, it mostly
cannot be stored at on-chip memory - in
contrast to configware code tending to be
massively more compact. Commercially
available platform FPGAs can have up to
more than 700 local on-chip memory blocks,
so that data streams for many applications
can be scheduled to/from fast local memory
(fig. 8) [59]. This also helps to explain the
first reconfigurable computing paradox.

The von Neumann syndrome: very high cost. From software
to configware migration a hardware cost reduction to ~10% has
been reported, also reducing the number of racks needed to ~10%
[45]. Much more is expected for the future. A drastic reduction of
floor area needed is a substantial cost factor because of the building
size needed. Also, if needed at all, the cost of
air conditioning equipment and the electricity
bill coming with it is massively reduced:
another motivation for a paradigm revision.

Mapping from time to space: the Education Wall. In contrast to vN,
the anti machine is data-stream-based: no instruction fetch at run time.
Mapping an application from software to configware means mapping
from time to space - a domain hated by people with a software-only
background. A Japanese CTO when introduced [60] to rDPAs [61]: „But
you cannot implement decisions!“ We immediately see the Education
Wall in his brain. How to map a flowchart’s decision box into the space
domain? It turns into a demultiplexer controlled by the decision bit
running on an extra wire instead of sitting in a CPU’s register: it’s
branching in space. (The Register Transfer Module system (1972) sold
by Digital Equipment [62], and a similar system (1967) from academia
[63], are based on such a mapping of flowcharts.) See, how this
important finding was commented in the 70ies by the HDL scene: „This
is so simple. Why did it take 25 years to find out?“ This backlog was due
to the tunnel view of the software-only mind set. Meanwhile time to space
mapping is an old hat: we should stop ignoring it. This request is urgently
addressed to our curriculum recommendation groups like the joint
ACM/IEEE-CS task force, still hopelessly reluctant to discuss RC
issues. Such a software-only mind set misses the IT job market. To create
better visibility of

these problems and to encourage activities to cope with the
Education Wall the International Annual Conference
Series on RC education has been founded. [67] [68].

Figure 9. Overhead avoided by antimachine w. distr. on-chip memory.

type of run time overhead v. Neumann machine hardwired
antimachine

reconfigurable
antimachine

9 state address computation instruction stream none
10 data address computation instruction stream none
11 inter PU communication instruction stream none
12 instruction fetch instruction stream none
13 data meet PU instruction stream none
14 synchronization instruction stream none
15 multi-threading instruction stream none
16 transactional memory instruction stream none
17 message passing instruction stream none
18 multiplexing [57] instruction stream reduced or none

no
 in

str
uc

tio
n f

etc
h a

t r
un

 tim
e

1980 1990 2000

20

10

0

Figure 10. Electricity consumption.

[Mark P. Mills]

2010 2020

30

40

50

%
 o

f
al

l U
S

 k
W

h
U

S
 c

o
m

p
u
te

rs

pred
icti

ons

Figure 11. Oil price development.

70
60
50
40
30
20
10
0
1960 1980 2000

U
S

-$
 /

ba
rr

el
 b

re
nt

 o
il

year

[BUSINESSWEEK]

3 year average

30

20

10

0
1940 1960 1980 2000 2020 2040

b
il

li
o
n
s

o
f

b
ar

re
ls

 /
 y

ea
r

Figure 12. Worldwide oil production.

[Peter Scaife]

buyer’s market seller’s market

actual production

prediction

Undiscovered, the antimachine paradigm
has been around for decades: used indirectly
via highly inefficient instruction streams.

Software to configware migration
promises tremendous speedups
and energy savings: at much lower cost

MIPS/watt are
more important
than MIPS/$.
(invited paper in:) K. Bertels et al. (ed.): The Future of Computing - Essays in memory of Stamatis Vassiliadis; TU Delft, 2007
ISBN: 978-90-807957-3-0 NUR 958

5

Dynamically Reconfigurable FPGAs [69] are partially
reconfigurable where parts of it can be running while other parts
are being reconfigured. Dispatching, scheduling and swapping
configware macros are the job of a configware OS (configware
operating system [70]). „No instruction fetch at run time“ still holds, when the model used here follows a
clean definition. This is a bit difficult to explain to beginners without some advanced FPGA background.

Fully fledged paradigm shift not needed. Classical CS
knowledge is still important (also to run legacy software). We
need only the additional adoption of a second paradigm, which is
only partially different from the von Neumann mind set. The
second paradigm, the antimachine, is a twin brother of the von
Neumann paradigm. The control syntax is mainly the same (fig.
7). Only the semantics is different: controlling data streams
instead of instruction streams. This helps us to find a good bridge

strategy to go from von Neumann single paradigm to a twin paradigm methodology. Most ingredients of
the antimachine methodology are rather old stuff - mostly ignored by the CS community. Most of the
enabling technologies of RC and to cope with the von Neumann syndrome, have been published at least 20
years ago, like for instance, about loop transformations,
routing algorithms, languages to express parallelism,
compilation techniques, data streams, systolic and
supersystolic arrays, software to hardware migration etc.
The point of view may be slightly different to-day.
Understandable modelling scheme needed. A global system view is required for grasping the principles
and essential issues of the contemporary heterogeneous twin paradigm systems, not only in under-
graduate education, we need an intuitive terminology and an understandable common modeling scheme.
A style of schematics with a clear distinction between von Neumann subsystems and antimachine blocks
helps a lot. We distinguish 3 different types of programming sources (fig. 13) [71]. Instead of only type
of source („software“) in von-Neumann-only systems (fig 14 b), two more kinds of sources are added by
RC (fig. 14 c), which we should not call software: it’s configware to set up the structure of reconfigurable
resources, and flowware for scheduling the data streams, according to configware compilation results. To
create and understand such schemes we should clearly distinguish different types of programming
sources: source type 1 (row 3 in fig 8,) to set up resources (not needed for hardwired machines), and
source type 2 (row 4 in fig 8) for scheduling (instruction streams by software for von Neumann machines,
or, by flowware for data streams at antimachines). This twin paradigm approach means the interweavement
of 2 cultures: a transdisciplinary approach (fig. 16), affiliating the instruction-stream-based mind set
(computing in time: procedural semantics) with the data-stream-
based mind set (computing in space: structural semantics). It is
easy, since the syntax is mainly the same (fig. 7). Affiliating should
not mean mixing. Although the semantics is different, it should
avoid confusion by navigating with a clean coordinate system: this
challenge to educators can definitely be mastered.

Platform FPGAs include a domain-specific
mix of hardwired module blocks like LUTs,
multipliers or DSP cells, memory objects,
ALUs, etc., specialized ALUs, vN
processors, sometimes with customizable
instruction set processors, and even analog
components. Such a heterogeneous mix
poses significant new challenges for
programmers and for synthesis software.
This makes quantification of the
performance and capacity of modern FPGAs
– and particularly comparison of various
arrays – almost impossible.

Coarse-grained Reconfigurable Computing: for mastering the education wall. The mental models of
hardware and software engineers are unnecessarily set apart from each other [40]. But the market trend goes
away from a bit-level FPGA hardware mind set, over to functional level with MAC, ALUs, DPUs and CPU-
cores inside platform FPGAs [40] and rDPAs. A bridge strategy to cope with programmer’s reluctance is the
use of coarse-grained reconfigurable data path arrays (rDPAs) [72] [61]. Their cores are rDPUs
(reconfigurable data path units) not having a program counter (fig. 5). In contrast to using FPGAs the modeling
with rDPUs reaches functional level, coming much closer to
the software-based mind set. Much better than any kind of
FPGAs, the rDPAs (e.g. [73]) are the best educational

Source is compiled into:

Software an instruction schedule
Flowware a data schedule

Configware a pipe network by
placement and routing

Figure 13. Sources by compilation targets.

Figure 14. Nick Tredennick’s
machine classification scheme.

resources fixed
algorithms fixed resources variable

algorithms variable

algorithms variable
resources fixed

a) early machines* (e.g. DDA):

b) von Neumann machine:

c) Reconfigurable Computing

no source code needed

software source code

configware source code

flowware source code
(scheduling the data streams)

(reconfigurable antimachine):

(scheduling the instruction streams) resources fixed
algorithms variable

d) the hardwired antimachine*

flowware source code
(scheduling the data streams)

*)[Hartenstein]

*) & hardwired
accelerators

(Brodersen etc.)

We see a trend away from a bit-
level FPGA hardware mind set,
over to functional level with MAC,
ALUs, DPUs, CPU-cores etc [40].

Using rDPAs (coarse-grained
reconfigurable arrays) is
the best strategy to bridge
the education wall - b y
raising the abstraction level.

The von Neumann paradigm is
tremendously overhead-based
- in contrast to the Antimachine.

rDPAs: methodology is ready - users
are not (delaying the break-through).
(invited paper in:) K. Bertels et al. (ed.): The Future of Computing - Essays in memory of Stamatis Vassiliadis; TU Delft, 2007
ISBN: 978-90-807957-3-0 NUR 958

6

strategy to bridge the software/configware chasm. Well-known and easily understandable loop transformations
are smoothly mappable into pipe networks to be configured on rDPAs [51] [52]. Configware code size (much
faster configuration time) and effective technology parameters of rDPAs (fig. 4) are much better than those of
FPGAs (fig. 3) by about 4 orders of magnitude. Techniques for rDPA-based co-compilation and design space
exploration, including automatic software / configware partitioning
and interface generation, have been demonstrated [51] [61] [74].
rDPA coarse-grained arrays to avoid the memory wall. Fig. 15 illustrates the performance advantage of a
coarse-grained rDPA array (row 2) over a manycore array of CPUs (row 1). Moving data between CPUs goes
through common memory needing instructions slowed down by the memory wall for both: moving the data and to
evoke executions on the CPUs (line 1). However, via compilation techniques for a coarse-grained reconfigurable
array (placement and routing) the interconnect between rDPUs is configured
to form a pipe network such, that data are directly pushed without needing
common memory. This avoids data memory cycles. The execution within
each rDPU is triggered by handshake, i. e by the arrival of data piped through
directly from another rDPU. This avoids instruction memory cycles.
rDPA coarse-grained arrays vs. platform FPGAs. rDPUs inside rDPAs are reconfigurable, whereas
hardware blocks in platform FPGAs are not. Following a less understandable model, platform FPGAs are
less suitable for a bridge strategy than rDPAs. In contrast to FPGAs, rDPAs like the XPP array from PACT
[73] provide higher speedups and lower energy consumption - coming with a compilation environment
including tools for automatic interfacing CPUs with rDPUs - closing a zipper (fig. 16).

Conclusions. RC is an essential qualification for the
manycore future [40], HPC and supercomputing. The
performance of von Neumann computing systems is
dramatically behind expectations. Gordon Moore’s curve is far
away from indicating computing performance. Von Neumann-
based computing comes along with a tremendous array of
instruction stream overhead phenomena, which are not coming
with RC methodologies having
no instruction fetch at run time.
Von-Neumann-based programmer
productivity progressively declines
with an increasing number of
processor cores involved. The equipment cost and energy
consumption of von-Neumann-based computing are
too high by more than an order of magnitude. Available RC
methodology to cope with this syndrome is mainly ignored.
Exceptions are many areas in embedded systems.
Curriculum recommendations fail to hit this present and
future IT job market, missing to consider that most software
is written for embedded systems and most MIPS run on
FPGAs. Educational deficits hamper the development of

better development tools for better acceptance. We urgently need (1) Reconfigurable Computing education
and training for the entire CS and IT community. and (2) to update CS curricula by a twin paradigm zipper
strategy throughout entire course programs. RC should be established as a vehicle for fascinating learning
for the manycore future [40] and to reverse the CS enrolment down trend. The potential performance gains
and massive reductions of equipment cost and energy
consumption by RC are by far too high to pass up such
golden opportunities.
Literature
[1] R. Hartenstein (keynote): The Transdisciplinary Responsibility of CS Curricula; Proc. IDPT’06, June 26 -29, 2006, San Diego, USA
[2] H. Goldstein, J. von Neumann, A. Burks: Report on the mathematical and logical aspects of an electronic computing

instrument; report, Princeton Institute of Advanced Study, 1947
[3] R. Hartenstein (invited paper): The Microprocessor is no more General Purpose; Proc. IEEE ISIS, Austin, Texas, 1997
[4] http://www.fpl.uni-kl.de/papers/paper097.pdf
[5] J. Backus: Can programming be liberated from the von Neumann style?; Communications of the ACM, August 1978, 20(8).
[6] Arvind et al.: A critique of Multiprocessing the von Neumann Style; Proc. ISCA 1983
[7] R. Hartenstein (opening keynote): Reconfigurable Computing and the von Neumann Syndrome; ICA3PP, June 2007, Hangzhou, China

moving data between data transport execution triggered by strategy

1 vN CPU cores by instruction streams
via common memory instruction streams moving data at run time

2 rDPU cores within rDPA
(coarse-grained array)

piped through: directly
from rDPU to rDPU

arrival of data
(transport-triggered)

moving the locality of
execution at compile time

Figure 15. Avoiding the memory wall by coarse-grained reconfigurable array instead of many core CPU array.

Figure 16. Twin paradigm zipper strategy to jazz
up CS education by Reconfigurable Computing.

the paradigm twins should be seamlessly inter-
woven throughout the entire course programs

instruction-
stream-based

(software)

data-stream-based

(flowware and
configware)

programming:
programming:

CPU cores rDPU cores

von Neumann Antimachine
(reconfigurable)

time domain
space domain

(& other accelerators)

co-compilation [52] [54] [73],
OS [70] et al., interfacing, etc.

RC is an essential
qualification for the
manycore future, HPC
and supercomputing.

RC should be established
as a vehicle to fascinate
learning for the manycore
future and to reverse the
enrolment downtrend.

vN principles are fundamentally wrong,
since data processing targets data
streams - not instruction streams.

The personal supercomputer is near.
(invited paper in:) K. Bertels et al. (ed.): The Future of Computing - Essays in memory of Stamatis Vassiliadis; TU Delft, 2007
ISBN: 978-90-807957-3-0 NUR 958

7

[8] http://helios.informatik.uni-kl.de/FPGAbooks/index.htm
[9] Christphe Bobda: Introduction to Reconfigurable Computing Systems; Springer-Verlag, 2007
[10] R. Hartenstein (invited chapter): Basics of Reconfigurable Computing; in: J. Henkel, S. Parameswaran (editors): Designing

Embedded Processors. A Low Power Perspective; Springer Verlag, March 2007
[11] BWRC, UC Berkeley, 2004
[12] R. Hartenstein (invited chapter): Morphware and Configware; in Albert Zomaya (ed.): Handbook of Nature-Inspired and

Innovative Computing: Integrating Classical Models with Emerging Technologies; Springer, 2006
[13] R. Hartenstein: A Decade of Research on Reconfigurable Architectures - a Visionary Retrospective; DATE 2001, Munich, Germany
[14] J. Becker (keynote): Adaptive Reliable Chips: Challenges in Reconfigurable and Organic Computing in the Nano Era;

Proc. IDPT 2007, June 2007, Antalya, Turkey
[15] Special issue on Reconfigurable Computing: SDPS Journal of Integrated Design and Process Science; December 2007
[16] R. Hartenstein (keynote): Software or Configware? About the Digital Divide of Computing; 18th International Parallel and

Distributed Processing Symposium (IPDPS), April 26–April 30, 2004, Santa Fe, New Mexico, USA
[17] R. Hartenstein (keynote): The Impact of Morphware on Parallel Computing; 12th EUROMICRO Conference on Parallel,

Distributed and Network based Processing (PDP04); February, 11-13, 2004. A Coruña, Spain
[18] http://hartenstein.de/NewJournal.pdf
[19] T. Makimoto (keynote): Impact of Chip Innovations Driving the Computing Power; ISC 2007, June 26 - 29, 2007, Dresden, Germany
[20] R. Hartenstein (opening keynote): Supercomputing goes Reconfigurable; Winter International Symposium on

Information and Communication Technologies (WISICT 2005), Cape Town, South Africa, Jan. 3 - 6, 2005
[21] R. Hartenstein (invited paper): Reconfigurable Supercomputing: Hurdles and Chances; Proc.ISC’06, June 28-30, 2006, Dresden, Germany
[22] R. Hartenstein: Configware für Supercomputing: Aufbruch zum Personal Supercomputer; PIK, 2006
[23] R. Merrit: M'soft: Parallel programming model 10 years off; EE Times (07/23/07)No. 1485, P. 4; http://www.eetimes.com
[24] http://www.pse.siemens.at/apps/sis/ge/pseinternet.nsf/0/PKFC681010482920B2C12572A40059C972
[25] T. El-Ghazawi (panelist): Supercomputing on Exotic Architectures; SC07, Reno, NV, November 2007
[26] M. Foster, H. Kung: Design of Special-Purpose VLSI Chips: Example and Opinions. ISCA 1980
[27] H. T. Kung: Why Systolic Architectures? IEEE Computer 15(1): 37-46 (1982)
[28] N. Petkov: Systolic Parallel Processing; North-Holland; 1992
[29] R. Kress et al.: A Datapath Synthesis System for the Reconfigurable Datapath Architecture; ASP-DAC'95
[30] First International Workshop on Systolic Arrays, Oxford University on 2-4 July 1986. The proceedings: see [31]
[31] W. Moore, A. McCabe and R. Urquhart (eds.): Systolic Arrays, Bristol: Adam Hilger, 1987.
[32] IEEE 18th Int’l Conf. on Application Specific Systems, Architectures, and Processors (ASAP), Montreal, CANADA, Jul. 2007.
[33] http://asap-conference.org/
[34] A. Hirschbiel et al.: A Flexible Architecture for Image Processing; Microprocessing and Microprogramming, vol 21, 1987
[35] M. Weber et al.: MOM - Map Oriented Machine; in: E. Chiricozzi (ed.): Parallel Processing and Applications, North-Holland, 1988
[36] M. Weber et al.: MOM - a partly custom-design architecture compared to standard hardware, Proc. IEEE Compeuro, Hamburg 1989.
[37] The dataflow machine does not have a sequencing counter: arbiter-driven its operation is indeterministic
[38] A. Ast, et al.: Data-procedural Languages for FPL-based Machines; FPL’94
[39] Robert S. Cohen (ed.): Ernst Mach. Physicist and Philosopher; Kluwer Academic Publishers, 1975,
[40] A. Fuchs (Siemens AG, Vienna, Austria): personal communication
[41] Burton J. Smith (keynote): Reinventing Computing; ISC 2007, June 26 - 29, 2007, Dresden, Germany
[42] T. El-Ghazawi et al.(panelists): Reconfigurable Supercomputing: is High-Performance, Reconfigurable Computing the Next

Supercomputing Paradigm? SC06, Int’l Conf. on HPC, Networking, Storage and Analysis, Nov. 11-17, 2006, Tampa, Florida
[43] D. De Roure (keynote): eScience is about Scientists too; eResearch Australasia 2007, June 26 - 28, 2007, Brisbane, Australia
[44] M. Knights: Grid computing misses the point, says academic; OS and Servers News, June 28, 2007, www.techworld.com
[45] Herb Riley, R. Associates: http://www.supercomputingonline.com/article.php?sid=9095
[46] J. Shalf: Overturning the Conventional Wisdom for the Multicore Era; ISC 2007, June 26 - 29, 2007, Dresden, Germany
[47] Th. Sterling: HPC Achievement and Impact - 2007: Q & A; ISC 2007, June 26 - 29, 2007, Dresden, Germany
[48] M. Herz et al. (invited paper): Memory Organization for Data-Stream-based Reconfigurable Computing; ICECS 2002,
[49] M. Herz, et al.: A Novel Sequencer Hardware for Application Specific Computing; Proc. ASAP‘97
[50] H. Reinig et al.: Novel Sequencer Hardware for High-Speed Signal Processing; Proc. DMM, Smolenice, Slovakia, Sept.1995
[51] J. Becker et al.: Parallelization in Co-Compilation for Configurable Accelerators; Proc. ASP-DAC´98
[52] J. Becker: A Partitioning Compiler for Computers with Xputer-based Accelerators, Ph. D. diss., Univ. of Kaiserslautern 1997
[53] E. Moscu Panainte: The Molen Compiler for Reconfigurable Architectures; Ph. D. dissertation, 2007, TU Delft
[54] E. Moscu Panainte, K. Bertels, S. Vassiliadis: The Molen compiler for reconfigurable processors; ACM Trans. TECS, Febr. 2007)
[55] M. Ayala-Rincón et al.: Prototyping Time and Space Efficient Computations of Algebraic Operations over Dynamically Reconfigurable

Systems Modeled by Rewriting-Logic; ACM Trans. on Design Automation of Electronic Systems (TODAES), 2006
[56] R. Broderson et al.: The Biggascale Emulation Engine; Proc. FPGA 2002
[57] G. Koch et al.: The Universal Bus Considered Harmful; Proc. 1st EUROMICRO Symp.; Nice, France, 1975; North Holland, 1975
[58] M. P. Mills: The Internet Begins with Coal; 1999, Green Earth Society, USA
[59] M. Herz: High Performance Memory Communication Architectures for Coarse-grained Reconfigurable Computing

Systems; Ph. D. thesis, Kaiserslautern, 2001
[60] M. Herz et al.: On Reconfigurable Co-Processing Uhnits; in: J. Rolim (editor): Parallel ad Distributed Processing; 1998
[61] U. Nageldinger et al.: Generation of Design Suggestions for Coarse-Grain Reconfigurable Architectures; FPL 2000
[62] C. G. Bell et al: The Description and Use of Register-Transsfer Modules (RTM's); IEEE Trans-C21/5, May 1972
[63] W. A. Clark: Macromodular Computer Systems; 1967 SJCC, AFIPS Conf. Proc. vol. 30, 1967, Washington, DC.
[64] R. Männer, R. Spurzem et al.: AHA-GRAPE: Adaptive Hydrodynamic Architecture - GRAvity PipE; Proc. FPL 1999
[65] T. Narumi, et al.: 46 Tflops Special-purpose Computer for Molecular Dynamics Simulations: WINE-2; ISCP2000, Beijing, 2000.
[66] T. Narumi et al.: Molecular dynamics machine: Special-purpose computer for molecular dynamics simulations; Molecular Simulation, 1999
[67] http://www.fpl.uni-kl.de/RCeducation
[68] R. Hartenstein: Why we need Reconfigurable Computing Education: Introduction; RCeducation, March 1, 2006, Karlsruhe,Germany
[69] T. Pionteck, C. Albrecht, R. Koch, E. Maehle, M. Huebner, J. Becker: Communication Architectures for Dynamically

Reconfigurable FPGA Designs; Proc. RAW 2007, Long Beach, California USA
[70] M. Platzner et al.: Operating Systems for Reconfigurable Embedded Platforms; IEEE Trans. on Computers. 53(11), Nov. 2004.
[71] N. Tredennick: Technology and Business: Forces Driving Microprocessor Evolution; Proc. IEEE Dec. 1995
[72] J. Becker, M. Vorbach: An Industrial/Academic Configurable System-on-Chip Project (CSoC): Coarse.grain XPP/Leon-

based Architecture Integration; DATE 2003
[73] http://www.pactxpp.com
[74] J. Becker et al.: Automatic Parallelism Exploitation for FPL-based Accelerators; Proc.HICSS'98, Big Island, Hawaii,1998
(invited paper in:) K. Bertels et al. (ed.): The Future of Computing - Essays in memory of Stamatis Vassiliadis; TU Delft, 2007
ISBN: 978-90-807957-3-0 NUR 958

