
D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
1

��������� ����������	��

�������	�	���������
	�����	�������
�
�		����� �
�� ����	� �� ������
	���� ���� ���	
� �� �	���	� �

	�	�
��� �� �	������
���	� ��������� �� �	 � �
		�� �

	������
���	������
���������	�	
��������	���
��������!
��
�	� �
���	��
	������
���	� �����
��� ���� �
���������
���
"	��	�����	�����
#��	����
�
�	��
� ����	�� ���� �
�
�������
	������
���	
�����
���������$���	������������
����
����
�
�����������	��
�� �
�	��
��� �
�
�������� ���� �� ��
�
	������
���	
�����
���������	��
	�	�����	����$���	������	�����
������	
��� �
	� ������
��� �	����	� �� �������� � �
	�	��� �� ����
��
������� �������	
	� �������	��������� �
	�������
������	
�����	��� ��	�� ��� �		�	��� ��� 	��� ��� �� ������	������� �	
�
������	������� ����
�����
%���� 	��	��	�� ���
���� ��
"	��� �� �	���	� �� �&'� �
�	������
���	� ��������� ����
	���	�� ��'�� %�	� ���	

������
��	��� �����
	�������
	��"������	� �
����	
�����(����!� �
��	� ���� ��	� ��

	���)���	������
�������� �� �
��������� �
�
��
� �
	*��� �
	��$�	������������
�$���	��)���	�������
����� �
	*��� �
	� �$����������� %�	� ���	
� �� �� �

����������	�����	�����
����������������� �
	�������
���

	�
����������
Reconfigurable platforms are heading from niche to

mainstream [1], bridging the flexibility gap between
ASICs and microprocessors. It’s time to revisit R&D results to
derive a roadmap to SoC design and emerging new business model.

�� ��
In contrast to using FPGA use (fine grain reconfigurable)

the area of �	������
���	��������� stresses the use of coarse
grain reconfigurable arrays (RAs) with pathwidths greater than 1 bit,
because fine-grained architectures are massively less efficient,
due to a huge reconfigurability overhead and poor routability [2]
[3]. Since computational datapaths have regular structure
potential, full custom designs of
	������
���	���������������
(rDPUs) are drastically more area-efficient. Coarse-grained
architectures provide operator level CFBs, and very area-
efficient datapath routing switches. A major benefit is massive
reduction of configuration memory and configuration time, and
drastic complexity reduction of the P&R (placement and routing)
problem. Several architectures will be briefly outlined (for more
details see [4]). Some of them introduce �����$�
�����

solutions, where more coarse grain can be achieved by bundling
of resources, like 4 ALUs of 4 bits to obtain a 16 bit ALU.

��	 ���������������������������������
Mesh-based architectures arrange their PEs mainly as a

rectangular 2-D array with horizontal and vertical
connections which supports rich communication resources
for efficient parallelism. and encourages nearest neighbour
(NN) links between adjacent PEs (NN or 4NN: links to 4
sides {east, west, north, south}, or, 8NN: NN-links to 8 sides
{east, north-east, north, north-west, west, south-west, south,
south-east} like w. �+,))� �

��: [5]). Typically, longer

lines are added with different lengths for connections over
distances larger than 1. '�$�����-'������������. [6] has
been introduced to implement regularly structured
datapaths. It is a FPGA-like mixed fine and coarse grained
architecture with 1 and 4 bit paths. Its fabric includes 3
component types: control logic, the datapath, and memory.
The datapath block consists of 4 bit-slices: each bit-slice
with a lookup table, a carry chain and a 4 bit register. DP-
FPGA provides separate routing resources for data
(horizontal, 4 bits wide) and control signals (vertical, single
bit). A third resource is the shift block to support single-bit
or multi bit shifts and irregularities.
%�	� /
	���

�� is primarily a mesh of rDPUs physically

connected through wiring by abutment: no extra routing
areas needed. In 1995 it has been published [7] as “rDPA”
(reconfigurable DataPath Array). “KressArray” has been coined
later. The KressArray is a super-systolic array (generalization of
the systolic array) which is achieved by '�)) (see section 3.2).
Its interconnect fabric distinguishes 3 physical levels: multiple
unidirectional and/or bidirectional NN links (fig. 1), full length or
segmented column and/or row backbuses, a single global bus
reaching all rDPUs (also for configuration). Each rDPU can
serve for routing only, as an operator, or, an operator with
extra routing paths. All connect levels are layouted over the
cell, so that wiring by abutment capability is not affected. A
first 32 bit KressArray included an additional control unit for
the ��$0 [8] 1���	
 [9] [10] [11] [12]. Its rDPUs support all
C language operators. With the new Xplorer environment [13]
rDPUs also support any other operator repertoires including
branching, and loops. I/O data streams from and to the array
can be transferred by global bus, array edge ports, or ports of other
rDPUs (addressed individually by address generator).
Supported by the DPSS application development tool and a
platform architecture space explorer (PSE) environment the basic
principles of the KressArray define an entire family of KressArrays
covering a wide but generic variety of interconnect resources
and functional resources. A later PSE version (see section 4.2),
supports the rapid creation of RA and rPDU architectures
optimized for a particular application domain, and rapid
mapping of applications onto any RA of the family.
��� [14] combines concepts from

FPGAs and data flow computing [15]. It’s
a 16 bit pipenet [16] with mesh-connected
IFUs (Interconnected Functional Units), a
crossbar switch, an integer multiplier, and six
data ports, and relies highly on runtime
reconfiguration using wormhole routing.
Each IFU features an ALU, a barrel shifter to
support multiplication and floating point.
��%�21 [17] is a multi-granular array of 8-bit
BFUs (Basic Functional Units) with procedurally programmable
microprocessor core including ALU, multiplier, 256 word data
and instruction memory and a controller which can generate
local control signals from ALU output by a pattern matcher, a
reduction network, or, half a NOR PLA. The routing fabric

������������������ �����!
��������� ������"�#������������������������
� �������$���%�����

(invited embedded tutorial)
Reiner Hartenstein, University of Kaiserslautern, Germany

http://www.fpl.uni-kl.de hartenst@rhrk.uni-kl.de

Fig. 1: KressArray
NN ports examples.

rDPU

16 8 32

2

24

D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
2

provides 3 levels of 8-bit buses: 8 nearest neighbour (8NN) and 4
second-nearest neighbour connections, bypass connections of
length 4, and global lines. For more details also see [4]. The Garp
architecture [18] resembles an FPGA and comes with a MIPS-II-
like host and, for acceleration of specific loops or subroutines, a
32 by 24 RA of LUT-based 2 bit PEs. Basic unit of its primarily
mesh-based architecture is a row of 32 PEs. The host has
instruction set extensions to configure and control the RA. Garp has
a sophisticated routing architecture. ��3 -�	������
���	
�
����	���
	�3
�������. [19] provides a 4 by 4 array RISC
multi processor architecture of NN-connected 32-bit modified
MIPS R2000 microprocessor tiles with ALU, 6-stage pipeline,
floating point unit, controller, register file of 32 general purpose
and 16 floating point registers, program counter, local
cached data memory and instruction memory. �,����
-�	������
���	� ������	���� �

��� ��
�	��
. [20], a
reconfigurable accelerator, tightly coupled to a MIPS-II RISC
processor, consists of an 8 by 8 array of 16 bit “nanoprocessors”
with memory, and a global control unit. It uses NN connections
and 32 bit horizontal and vertical buses which also allow some
broadcast to processors, also to support SIMD operations.

The hexagonal �+,))��

��
[5] features a chessboard-like
floorplan with interleaved
rows of alternating ALU /
switchbox sequence and
includes embedded RAM
areas. Switchboxes can be
converted to 16 word by 4
bit RAMs. The interconnect
fabrics has segmented 4 bit
and 16 bit buses of different
length. An ALU data output
may feed the configuration
input of another ALU, so
that its functionality can be

changed on a cycle-per-cycle basis at runtime without
uploading. Partial configuration by uploading is not possible.
%�	�'�	����

���-'������������	������
���	��
����	���
	
�
� ����	�)���	��� 4567. for next generation wireless
communication is an array of RPUs. Each RPU consists of: 2
dynamically reconfigurable 8-bit Reconfigurable Arithmetic
Processing (RAP) units, 2 barrel shifters, a controller, two 16 by
8-bit dual port RAMs (used as LUT or FIFO), and, a
Communication Protocol Controller. The RPU array fabric uses
NN ports and global buses segmentable by switching boxes.
����	�	��)���	��8��)5999� ������ multi-protocol multi-

application reconfigurable platform RCP (reconfigurable
communication processor) [22] aims at initial markets in
communication infrastructure and is intended to cope with
the chaotic world of evolving standards, protocols and
algorithms with application areas as 2nd and 3rd generation
wireless basestations, fixed point wireless local loop
(WLL), smart antennas, voice over IP (VoIP), very high
speed digital subscriber loop (DSL), and, for instance,
supports 50 channels of CDMA2000. CS2000 chips have a
32 bit RISC core, connected to a RA of 6, 9, or 12
reconfigurable tiles, with 7 32-bit rDPUs (each including an 8
word instruction memory), 4 local memory blocks of 128 x
32 bits, 2 16x24-bit multipliers. The �,��������� of DSPs,
optimized for VoIP, by compressing voice into ATM or IP
packets etc., aims at next generation VoIP and VoATM.
Compared to conventional DSPs- a speed-up factor of 10 is
reported. ��#2)%:� -������
���	� �#�
����$������"	
2���
������)	�� %:����. is an adaptive instruction set
architecture for internet protocols (IP) and ATM packet-based
networks with flexibility for Any-Service-Any-Port (ASAP)
to deliver voice and data simultaneously over a unified data

network. It is a communications processor for carrier-class voice
gateways, soft switches, and remote access concentrators/remote
access servers (RAC/RAS), aiming at use like echo cancellation,
voice/fax/data modems, packetization, cellification, delay equaliz-
ation. The multi-context (2 extra configuration memories) �2�):�
-��	��$�
�
������	�)���	�$�$����. ASIC emulator (rapid
prototyping), has an 8051 controller, a 8x12, 8x16, or 16x16 RA
of 4 bit “digital macro cells” (DMC) and a RAA (reconfigurable
analog array). with configurable analog blocks (CAB) usable as
differential amplifiers, comparators, converters etc.
��� &�������������������������������

Some RAs are based on one or several linear arrays,
mainly aiming at mapping pipelines onto it. ����'
-�	������
���	����	���	��'�������. [23] aims at deep pipelines
for highly regular, computation-intensive tasks. It is a 1-D RA.
featuring 15 DPUs of 8 bit with integer multiplier (32 bit output), 3
integer ALUs, 6 general-purpose datapath registers and 3 local 32
word memories, all 16 bits wide. ALUs can be chained.
RaPiD includes an I/O stream generator with address
generators and FIFOs. RaPiD’s sophisticated routing and
configuration interconnect fabric cannot be detailed here.
���	�	��� [25], an accelerator

for pipelined applications,
provides several reconfigurable
pipeline stages (“stripes”) and
relies on fast partial dynamic
pipeline reconfiguration and run
time scheduling of configuration
streams and data streams.
PipeRench allows the con-
figuration of a pipeline stage each cycle, while concurrently
executing all other stages. The sophisticated fabric consists of
(horizontal) stripes of interconnect and PEs. A stripe provides
32 ALUs with 4 bits each. The whole fabric has 28 stripes.
��' ������������������������������
��''2�-�
�
������	��
����	����'	"��	��
�')�. stands

for architectures for rapid prototyping of computation-intensive
DSP data paths, featuring sophisticated fabrics using a central
reduced crossbar (difficult to rout) and a 2 level hierarchy of
segmentable buses. ��''2$6�[26] [27] consists of clusters of
8 arithmetic execution units (EXUs), 16 bits wide, including 8
word SRAM (which may be con-catenated for 32 bits). ��''2$5
[28] features a data-driven execution mechanism and has 48
EXUs, 16 bits wide. The ��	���	� Architecture [29] is a kind
of generalized low power “PADDI-3” with microprocessor
and heterogeneous RA of EXUs, which allows to mix fine and
coarse grained EXUs, and, have memories in place of EXUs.
��()����������������������������������

A universal RA obviously is an illusion. The way to go is
toward ASPPs (application-specific programmable products)
like sufficiently flexible RAs, optimized for a particular
application domain like e. g. wireless communication, image
processing or multimedia etc. There is a need for tools
supporting such dedicated RA architecture development. But
architectures have an immense impact on implementability of
good mapping tools. “Clever“fabrics are too sophisticated to
find good tools. Best are simple generic fabrics architecture
principles, or, a mapping tool which generically creates by itself
the architectures it can manage easily [13], or, a combination of
both approaches like platform space exploration (s. section 4.2).

'� ����������������������������
Programming frameworks for RAs are highly dependent

on structure and granularity, and differ by language level. For
MATRIX, PADDI-2 and REMARC it’s assembler level.
Some support the designer by a graphical tool for manual
P&R. Others feature automatic design flow from HDL or

FRQILJXUDEOH�ORJLF

9LWHUEL $���'

GLJLWDO GLVSOD\
LQWHUIDFH

LQWHUIDFH

ILOWHU

Fig. 2: Triscend cSoC example.

&6,�VRFNHW

$50

RWKHU�UHVRXUFHV

&RQILJXUDEOH�6\VWHP�,QWHUFRQQHFW��&6,��EXV

PHPRU\

�������� ���	
��� 3URJUDPPLQJ�
VRXUFH

���
�������� �������� ��	
����

���	�� ������������
�������

���������
���	������

��
�������	��

����������
�������

��	���	�����
���	������

Fig. 3: About terminology.

D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
3

high-level programming language. Environments differ by the
approach used for technology mapping, placement, routing.
Using only a simple script for technology mapping [30] DP-
FPGA [6] is not considered. Technology mapping is mostly
simpler for coarse grain than for FPGAs. Approaches are:
direct mapping, where the operators are mapped straight
forward onto PEs, with one PE for one operator, or, using an
additional library of functions not directly implementable by
one PE, or, more sophisticated tree matching also capable to
merge several operators into one PE by a modified FPGA tool
kit. An exception is the RAW compiler doing partitioning
instead of technology mapping, since RAW has RISC cores
as PEs accepting blocks from program input.

For operator placement, the architecture has an impact.
An approach often used for FPGAs synthesis is placement
by simulated annealing or a genetic algorithm. Garp uses a tree
matching algorithm instead, where placement is done together
with technology mapping. The use of greedy algorithms is
feasible only for linear arrays (PipeRench), or with a high level
communication network (RAW). PADDI is an exception by
using a scheduling algorithm for resource allocation.

Routing also features quite different approaches. In two
cases, the routing is not done in an extra phase but integrated
into the placement and done on the fly. One approach
(KressArray) uses a simple algorithm restricted to connects
with neighbours and targets with at most the distance of one.
The other (RaPiD) employs the pathfinder algorithm [30],
which has been developed for FPGA routing. Greedy routing
would be not satisfying. General exceptions to the routing
approaches is the RAW architecture, which features only one
high-level communication resource, so no selection of routing
resources is needed, and the PADDI architecture, which
features a crossbar switch having the same effect. Greedy

routing algorithms are only used for 1-D RAs, or architectures
capable to cure routing congestion by other mechanisms, like
Colt with wormhole run-time reconfiguration.

'�	 ���������������������
Assembler level code for coarse grain architectures can

be compared to configuration code for FPGAs. In the case
of systems comprising a microprocessor / RA symbiosis,
only the reconfigurable part is considered for classification.
Programming is done mainly at a kind of assembler level for
PADDI-2, MATRIX, and, RAs of REMARC. For
Programming PADDI-2 [28], a tool box has been developed
which includes software libraries, a graphical interface for
signal flow graphs, routing tools, simulation tools,
compilation tools and tools for board access and board
debugging. Major parts of this process are done manually.
The input specifies assembly code for each function in the
signal flow graph. The programmer manually partitions the
signal flow graph with a graphical tool, which also aids in
manual placement and routing. As an alternative to manual
placement and routing, an automated tool is provided,
which guarantees to find a mapping, if one exists, by
exhaustive methods which need much computation time.
For Programming MATRIX [17] an assembly level macro
language has been developed. Some work on P&R pointed
out the original MATRIX’s weak points [31]. REMARC
tools [20] allow concurrent C programming of RISC
processor and RA using a GCC compiler also generating
RISC instruction code to invoke REMARC code.

'��)����#��*��#����)����$������� ���
Like known from mapping onto FPGAs CHESS, Colt,

KressArray, and RaPiD (see fig. 5) use simulated annealing
or other genetics for placement, and two use pathfinder for
routing [30]. The KressArray DPSS (Datapath Synthesis
System) accepts a C-like language source. Compilation for
RaPiD works similar, but relies on relatively complex
algorithms. Colt tools use a structural description of the
dataflow. CHESS has been programmed from a hardware
description language (JHDL) source. P&R quality has a
massive impact on application performance. But, due to the
low number of PEs, P&R is much less complex than for
FPGAs and computational requirements are drastically
reduced. Tools for Colt [14] accept a dataflow description
(below C level) for placement by a genetic algorithm and routing
by a greedy algorithm (routing congestion is cured at run-
time by wormhole reconfiguration). Data stream headers
hold configuration data for routing and the functionality of
all PEs encountered.

Programming RaPiD [23] uses RaPiD-C, a C-like language
with extensions (like synchronization mechanisms and conditionals
for loops) to explicitly specify parallelism, data movement and
partitioning, Outer loops are transformed into sequential code for
address generators, inner loops into structural code for the RA.
The netlist is mapped onto RaPiD by pipelining, retiming, and
P&R by simulated annealing, with routing (by pathfinder [30])
done on the fly to measure placement quality [32]. To Program the
CHESS array [5] a compiler [33] was implemented accepting
JHDL [34] sources and generating CHESS netlists. Placement is
done by simulated annealing and routing by Pathfinder [30].

XVHG�IRU
DSSOLFDWLRQ

XQXVHGXVHG�IRU�GDWD
PHPRU\�SRUWVHTXHQFHUV

,�2�	�PHPRU\
FRPPXQLFDWLRQ
DUFKLWHFWXUH

Fig. 4: Mapping application (linear filter) and memory communication
architecture (dark background) onto the same KressArray, including
the address ports and the data ports to 4 different memory banks (5 of
8 memory port connects are routed through application DPUs).

������� !�����"�## $%&## ����" $��	

��������	 ������	���
���������

������	������������ ����	���������	��
���	��� ��	�
����� �����'�������	��
Fig. 5: FPGA-Style Mapping for coarse grain reconfigurable arrays.

D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
4

'�' +������� ����� �������
Greedy algorithms are poor in mapping to FPGAs. But,

although Garp is mesh-based, mapping treats it like a linear
array which allows mapping in one step by a simple greedy
routing algorithm. RAW features only one communication
resource, removing the wire selection problem from routing.
Instead, the compiler schedules time multiplexed NN
connections. CPU cores inside RAW PEs simplify mapping
by loading entire source code blocks. PipeRench resembling a
linear array and interconnect fabrics restrictions keep
placement simple for a greedy algorithm. PADDI uses a
standard P&R approach.

Garp tools[18] use a SUIF-based C compiler [35] to generate
code for MIPS host with embedded RA configuration code to
accelerate (only non-nested) loops. It also generates interfacing
instructions for the host, and a DFG (data flow graph). The
proprietary Gamma tool [36] maps the DFG onto Garp using a
tree covering algorithm Configuration code is generated (incl.
routing [38]), assembled into binary form, and, linked with the
hosts C object code. For more details also see [39]. RAW tools
[40] [41] include a SUIF-based C compiler and a run-time
system managing dynamic mechanisms like branch prediction,
data caching [42], speculative execution, dynamic code
scheduling. For details see [4]. The RAW project aims more at
parallel processing rather than reconfigurable computing and
failed in finding a good automatic mapping algorithm [43]�

PipeRench tools [25] [44] use the DIL single-assignment
language (SAL) for design entry and as an intermediate form.
First, the compiler inlines all modules, unrolls loops and generates
a straight-line SA program (SAP). After optimizations and
breaking the SAP into pieces fitting on one stripe, a greedy P&R
algorithm is run which tries to add nodes to stripes. Once placed, a
node is routed and never moved again. P&R is fast by crossbar
switch usage, coarse granularity, and, restriction to unidirectional pipelines.
CADDI [45], assembler and simulator, has been implemented
for PADDI. First a silage [46] specification is compiled into a
CDFG (control /data flow graph), used for estimations of critical
path, minimum and maximum bounds for hardware for a given
time allocation, minimum bounds of execution time, and for
transformations like pipelining, retiming, algebraic
transformations, loop unrolling and operation chaining. The
assignment phase maps operations to EXUs by a rejectionless
antivoter algorithm [46]. For more details also see [4].

For KressArrays the
DPSS (DataPath Synthesis
System) [7] generates
configuration code for
KressArrays from ALE-X
high-level language sources
[7] [50] supporting datapaths
with assignments, local
variables and loops. After
classical optimizations it
generates an expression
tree. Next processing steps
include a front end, logic
optimization, technology
mapping creating a netlist,
simultaneous P&R by
simulated annealing, and
I/O scheduling (incl. loop folding, memory cycle optimization,
register file usage). The result is the application’s KressArray
mapping and array I/O schedule. Finally configuration
binaries are assembled. Routing is restricted to direct NN
connect and rout-through of length 1. Other connect is
routed to buses or segmented buses. DPSS has also been
part of the MoM-3 Xputer compiler accepting and

partitioning a subset of C subset into sequential MoM code
and structural KressArray code. The more general CoDe-X
approach [51] uses this MoM compiler as part of a
partitioning co-compiler accepting a C language superset
and partitioning the application onto the host and one or
several Xputer-based accelerators.

'�(����������� ���
The VIRTEX FPGA family from Xilinx, the RAs being

part of the CS2000 series systems from Chameleon and
others are run-time reconfigurable. Programming a host/RA
combination is a kind of H/S Co-design. However using
such devices changes many of the basic assumptions in the
HW/SW co-design process: host / RL interaction is dynamic
and needs a kind of tiny operating system like eBIOS, also
to organize RL reconfiguration under host control. A typical
goal is mimization of reconfiguration latency (especially
important in communication processors), to hide
configuration loading latency, and, list scheduling of eBIOS
calls (also see § “CoDe-X” in section 4.1).

(� ��� ��������,�����-���
“von Neumann” and the classical compiler are obsolete

(fig. 11 a). Today, host/accelerator(s) symbiosis is dominant
(fig. 11 b) and most of the platforms summarized above make
use of it. Newer commercial platforms include all on a single
chip, like Altera’s EXCALIBUR combining a core processor
(ARM, or MIPS), embedded memory and RL. Sequential
code is downloaded to the host’s RAM. But accelerators are
still implemented by CAD, a C compiler is only an isolated
tool, and, ��� �
	� *� ����� �
	� ��
��������� ��� ������ ��	
��������� [36] [44] [52] [53] [53] [55], so that massive
hardware expertise is needed to implement accelerators.

(�	 ������ ��������
Using RAs as accelerators again changes this scenario: now

implementations onto both, host and RA(s) are RAM-based,
which allows turn-around times of minutes for the entire system,
instead of months needed for hardwired accelerators. This means a

��������
��	����'

$����	��
�´Y��1HXPDQQµ�

���	���()*+
�QR�WUDQVSXWHU��

PDFKLQH
SDUDGLJP

SURFHGXUDO�VHTXHQFLQJ�
GHWHUPLQLVWLF�QR�GDWDIORZ�>��@�

GDWD�VWUHDP�V�GULYHQ�E\� FRQWURO�IORZ

5$�VXSSRUW QR \HV

HQJLQH
SULQFLSOHV

LQVWUXFWLRQ
VHTXHQFLQJ

GDWD
VHTXHQFLQJ

VWDWH
UHJLVWHU

SURJUDP
FRXQWHU

�PXOWLSOH��GDWD
FRXQWHU�V�

FRPPXQLFDWLRQ
SDWK�VHW�XS

DW�UXQ�WLPH DW�ORDG�WLPH

GDWD
SDWK

UHVRXUFH VLQJOH�$/8 DUUD\�RI�$/8V

RSHUDWLRQ VHTXHQWLDO SDUDOOHO

Fig. 6: Machine Paradigms.

&RPSLOHU

#��������
,����'

#�-������
"������

"�	���	�

&RPSLOHU
,����'

#�-������
"�	���	�

#��������
&RPSLOHU

P
H
P
R
U\

6HTXHQFHU
"�	���	�

6HTXHQFHU
•••

³LQVWUXFWLRQV´³LQVWUXFWLRQV´
���
���
����

�������
���	
��

��
�
���	
��

��
�
���	
��

��������	�
�����������	�
���
�������
a) b) c)

Fig. 7: Machine paradigms: a) v.Neumann, b) Xputer, c) parallel Xputer

P
H
P
R
U\

• • •

Fig. 8: Synthesis a) hardwired, b) “von Neumann”, c) reconfigurable.

a) b) c)

#����
���	���

��	���	

.�#/�$�"

���������������������
���������������

$�������

������	�0�������

��1��������

���
�����

	�
�
����
�
�
����

#����
���	���

��	���	

.�#/�$�"

��������	
2����	���

��
�	�
�
����
�
�
����

������
�������
�
����
�
�
����

��������	
2����	���

������	���3�����0��
���������3�����0��

������	���3�����0��
���������3�
�4��

������	���3�
�4��
���������3�
�4��

D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
5

change of market structure by migration of accelerator
implementation from IC vendor to customer, demanding
automatic compilation from high level programming language
sources onto both, host and RA: �$���������� including
automatic software / configware partitioning. (fig. 11 c). Since
compilers are based on a machine paradigm and “v. Neumann”
does not support soft datapaths (because “instruction fetch”
is not done at run time: fig. 10) we need a new paradigm
(Xputer [55]) for the RA side, where the program counter (fig.
7 a) is replaced by a data counter (������	;�	��	
 [56]: fig. 7
b). Figure 6 compares both paradigms. With multiple data
sequencers (fig. 7 c) a single Xputer may even handle several
parallel data streams (example in fig. 4).
�'	$1 is the first such co-

compilation environment having been
implemented ([51] fig. 12), which
partitions mainly by identifying loops
suitable for parallelizing transformation
[3] [51] [54] into code downloadable
to the MoM accelerator Xputer. The
1���	
 Machine Paradigm for soft
hardware (fig. 6) [9] [10] [11] [12].
is the counterpart of the von
Neumann paradigm. Instead of a
“control flow” sublanguage a “data stream” sublanguage like
MoPL [57] recursively defines �������������� <����������
���,��	��	������� �����and���
���	������� ���. Later on
Chameleon Systems reports for CS2000 a co-compilation [22] tool
box �=)2',, combining compiler optimization, multithreading
to hide configuration loading latency, and, list scheduling to
find a ’best’ schedule. Whether automatic partitioning is used is
undisclosed. C~SIDE includes a GNU C compiler for the RISC
host, a HDL synthesizer for the reconfigurable fabric, a simulator,
a C-style debugger, a verifier, and eBIOS (eConfigurable Basic I/O
Services), a kind of operating system to interfaces the RISC
processor with the reconfigurable fabric. C~SIDE also supports
run-time reconfiguration (also see [47] [48]). The 2',
-2��	�
��	��'	"	���	��� ,�"�
��	��. tool box for CALISTO
with C-compiler, debugger, simulator, “Evaluation Module”
(EVM), and Real-time operating system (RTOS) supports
“Any Service Any Port” (ASAP) configurations for up to 240
channels of carrier class G.711 VoIP (voice over IP).

(�� %������$ ����./ �������0%$.�1
Some development environments aim beyond compilation.

DSEs (survey: [4]) and use interactive or automatic guidance
systems or design assistants giving advice during the design flow
to select one of many alternative solutions to meet design goals.
We may distinguish Design Space Explorers (DSEs) to optimize
a �	���� or Platform Space Explorers (PSEs) to optimize a
�
�
������	� �����
�. 2��	
����"	� '),� are '�,� -'	����
���������,�"�
��	��. [59] with effect predictors and proposal
generators, template-based ��� [60] (both for VLSI) and '2�
-'�������$2��	���"	��)2��. [61], targeting semi-custom ASIC
behavioural level, generate a schematic, a data flow graph, or a
layout from area, throughput, power, e.a. constraints specs.

A PSE serves to find an
optimum RA or processor array
(PA) platform for an application
domain by optimizing array
size, path width, processor’s
MIPS, number of ALUs and
branch units, local SRAM size,
data and instruction cache sizes,
local bandwidth etc. from
requirements like chip area,
total computation, memory size, buffer size etc. Software or
configware programming is finally not part of exploration, but may
serve platform evaluation. All three being non-interactive, the
„'),>�4?57��
���3 [19] featuring an analytical model, 2�:)
(Intelligent Concurrent Object-oriented Synthesis) [62] featuring
object-oriented fuzzy techniques, and >'),� �
� ������	���
�
�	��
�@ [67] (DSEMMP) aim at automatic synthesis of a
multiprocessor platform from system descriptions, performance
constraints, and a cost bound and generate an architecture.

Mapper

architecture
description
architecture
description

?:/

/

=

-

+

+ ?:

i3 *

*

* *

* *

i1

i0

i2

o1

o0

?:/

/

=

-

+

+ ?:

i3 *

*

* *

* *

i1

i0

i2

o1

o0

?:/

=

+

/

*

* ?:

i3 *

*

* +

* -

i1

i2

í0

o0

o1

?:/

=

+

/

*

* ?:

i3 *

*

* +

* -

i1

i2

í0

o0

o1architecture
description
architecture
description

complex
operator

o0 = f1(i0,i1,i2,i3)
o1 = f2(i0,i1,i2,i3)

i0

o0

o1

i1

i2

i3

complex
operator

o0 = f1(i0,i1,i2,i3)
o1 = f2(i0,i1,i2,i3)

i0i0i0

o0o0

o1o1

i1i1i1

i2i2i2

i3i3i3

d = (i2* i2) + (i3*i3);
if (d == 0)
{ o0 = 0;

o1 = 0;
}
else
{ o0 = ((i0*i2)+(i1* i3))/d;

o1 = ((i1*i2)-(i0* i3))/d;
}

ALE-X Code

d = (i2* i2) + (i3*i3);
if (d == 0)
{ o0 = 0;

o1 = 0;
}
else
{ o0 = ((i0*i2)+(i1* i3))/d;

o1 = ((i1*i2)-(i0* i3))/d;
}

d = (i2* i2) + (i3*i3);
if (d == 0)
{ o0 = 0;

o1 = 0;
}
else
{ o0 = ((i0*i2)+(i1* i3))/d;

o1 = ((i1*i2)-(i0* i3))/d;
}

ALE-X Code

i0i2i3 i1

* * * * * *

- + +

/ = /

?: ?:

o1 o0

operator graph
i0i2i3 i1

* * * * * *

- + +

/ = /

?: ?:

o1 o0

i0i2i3 i1

* * * * * *

- + +

/ = /

?: ?:

o1 o0

i0i0i2i2i3i3 i1i1

* * * * * *

- + +

/ = /

?: ?:

o1o1 o0o0

operator graph

ALE-X
Compiler

Fig. 9: Simplified example to illustrate platform space exploration (finding an optimized KressArray by KressArray Xplorer [43]).

�

�

n time

g time

le time

I��³,QVWUXFWLRQ�)HWFK´

microprocessor
parallel computer

Reconfigurable
Computing

on time ASIC

Fig. 10: “Instruction Fetch”.

run
time

loading
time

time

IDEULFDWLRQ
time

compile

WLPH�RI�ÄLQVWUXFWLRQ�IHWFK³

Fig. 12: CoDe-X
Co-Compiler

;�&� �&�ODQJXDJH
H[WHQGHG�E\�0R3/

"�##

���	�	�����

����'5��
6����
����

��7�$
��������

�8$
��������

���	 !��������'

�8$

���

�������	���

��	� ���	���	���
��-������

/�6�9
������� host

��8�������	���

5$0

�.
�. �.

Fig. 11: Computing Platforms: a) “v. Neumann”, b) current, c) emerging.

������
�����

$�"

5$0 ����
host

5$0

�������	���

��	�

D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
6

(�' %����,�����������$�������./ ��������
Currently memory bandwidth and power dissipation are the

most urgent optimization problems in DSE and PSE use as well
as in mapping applications onto platforms. Due to rapidly
spreading usage of portable systems recent research focuses on
low power embedded processors as well as on low power RAs.
The processor / memory communication bandwidth gap, which
spans up to 2 orders of magnitude (see fig. 13), where new
memory architectures like RAMbus or DDRAM and others
bring only slight alleviation, can be even wider in data-
intensive RA use, where caches do not help (fig. 10).

The more recently published Data Transfer and Storage
Transformations (DTST) ([63] - [69]) offer a methodology for
memory and communication power savings, and, loop
transformations [51] [70] [54] etc. for power savings [71] [72] and
speed-up - by working on data smaller local memory ([73] - [75])
instead of distant larger memory. Such DTSTs are a platform issue
capable to extend the power of PSEs. A general architecture
supporting such data locality strategies has been implemented
already a decade earlier: the smart memory interface of the MoM
reconfigurable architectures ([76] - [80] et al.), based on the
generic address generator (GAG) general sequencer concept ([12]
- [82] et al.), at that time also used for a flexible and storage
scheme optimization methodology [63] for concurrent multiple
memory banks (for illustration see fig. 4). It has been shown
([63] and earlier), that by using a 2-dimensional memory
organization this methodology provides a rich supply of generic
DTST transforms as well as their excellent visualization.

Local optimization usually leads to performance-degrading
runtime solutions of access conflicts with estimated cost
overhead of 10 - 100% (in power) for hardware and around
35% (in clock rate) for software [73] [74]. Also for global
exploration the use of conflict-directed ordering (CDO) [75]
as an extension of force-directed scheduling (FDS) [83] has
been proposed [84]. Instead of a signal access flow graph
(SAFG) [75] a multi-dimensional conflict graph (MD-CG) is
used for a generalized CDO (G-CDO) algorithm for data
transfer and storage exploration (DTSE) system [85] [86].

The KressArray Xplorer also yields solutions to the
memory bandwidth problem [63] and low power problems by
supporting mixed rDPU types, so that both, data sequencers and
rDPUs dedicated to the application can be mapped onto the same
KressArray what is illustrated by the example in fig. 4. These
Xplorer capabilities provide a straight-forward approach to support
architectural implementations of the Xputer soft machine paradigm.
(�(��� �����2��$.����������

Since to map an application onto a coarse grain RA may
take only minutes, retargettable mappers or compilers may
be also used for platform exploration. By profiling the
results of the same application or benchmark on different
platforms may be compared. Such a compiler / PSE
symbiosis like in 1��
	
 provides direct verification and

yields more realistic and more precise results than explorers
using abstract models for estimation and gives better
support for manual tuning.

The KressArray Xplorer, an
interactive PSE framework [13] [43]
has been implemented around a
modified DPSS mapper [7]. This
universal design space exploration
environment supports both,
optimum architecture selection (e.
g. domain-specific) and application
development onto it and includes
several tools: �
����	���
	� 	���
 (to edit communication
resources and annealing parameters), ��������	���
 (to change
I/O port type, freeze locations of edge port, cell or cell group
etc.), ����
������ ����	
 to edit and define the operator
repertoire, �
����	���
	� ����	����� �	�	
��
 [88], +'#
�	�	
��
 for cell simulation,
	��
�	�����	��	����������	�	
��

(planned, similar to [89]), � 	
�	������
 (planned [90], using
methods from [92]). A cycle through an exploration loop usually
takes only minutes, so that a number of alternative architectures
may be checked in a reasonable time. By mapping the application
onto it verification is provided directly. The Xplorer also
supports optimization solutions to the memory bandwidth
problem and the power dissipation problem (see section 4.3).

(�3 ������������ ������4�����������������
RISC core IP cells are available so small, that 32 (soon 64 or

more) of them would fit onto a single chip to form a massively
parallel computing system. But this is not a general remedy for
the parallel computing crisis [93], indicated by rapidly
shrinking supercomputing conferences. For many application
areas process level parallelism yields only poor speed-up
improvement per processor added. Amdahls law explains just
one of several reasons of inefficient resource utilization. A
dominating problem is the instruction-driven late binding of
communication paths (fig. 10), which often leads to massive
communication switching overhead at run-time. R&D in the
past has largely ignored, that the so-called “von Neumann”
paradigm is not a communication paradigm. However, some
methods from parallel computing and parallelizing compiler
R&D scenes may be adapted to be used for lower level
parallelism on RA platforms (compare § “Co-Compilation“).

3� ��"�#���������������0�����������1�
Deep submicron allows SoC implementation - not just

subsystems, and the silicon IP business reduces entry barriers
for newcomers and turns infrastructures of existing players into
liability [94] [95]. Already in the early days of reconfigurability
the business model has changed several times with the
programming model. The PAL (1st wave) with write-once
RAM has supported customization ���	
� ���������
	. The
FPGA (2nd wave) supports multiple reconfiguration ��
���
development The cSoC (3rd wave) permits multiple
reconfiguration ���	
�development. We may distinguish (also
see fig. 14) following classes of cSoC chip: high density FPL
from catalogue (Soap Chip), configurable System on a Chip
(cSoC), and, special SoC with FPL IP core (no acronym).

But so far we have not yet
learnt the lessons taught by the
history of silicon application
synthesis, which distinguishes
three phases [49] [96]:
hardware design (fig. 8 a),
microcontroller usage (fig. b),
and FPL / RA usage (fig. c).
The first shift has switched theFig. 13: Processor / memory performance gap (from Dave Patterson [87]).

��� System on a Chip
���� configurable SoC
������	
��System on a

programmable Chip
���� application-specific

programmable product
Fig. 14: Acronyms.

\HDUV� � � �

UHYHQXH
��PRQWK

SURGXFW
XSGDWH��

XSGDWH��

$6,&

UHFRQILJXUDEOH�E\
FRQILJZDUH�GRZQORDG

Fig. 15: accelerator longevity [94].

D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
7

business model from structural synthesis by net-list-based CAD
(fixed algorithms, no machine paradigm) to RAM-based
procedural synthesis by compilation, based on a machine
paradigm, which drastically reduces the design space by
guidance - the secret of success of the software industry. Note:
RAM-based means flexibility and fast turn-around and shifts
product definition from hardware vendor to customer’s site.
But the 3rd phase (resources have become variable), RAM-
based structural accelerator synthesis (fig. 11 b) still uses
phase 1 methods (CAD). It is time to switch to real
compilation techniques, based on a soft machine paradigm.
But the R&D scenes still ignore, that we now have a
dichotomy of RAM-based programming: procedural versus
structural, integrating two worlds of computing.

Exploding design cost and shrinking product life cycles of
ASICs create a demand on RA usage for product longevity.
Performance is only one part of the story. The time has come
fully exploit their flexibility to support turn-around times of
minutes instead of months for real time in-system debugging,
profiling, verification, tuning, field-maintenance, and field-upgrades. A
new “soft machine” paradigm and language framework is
available for novel compilation techniques to cope with the new
market structures transferring synthesis from vendor to customer.

Nevertheless, reconfigurable platforms and their appli-
cations are heading from niche to main-stream, bridging the gap
between ASICs and micro-processors (fig. 16). Many system-
level integrated future products without reconfigurability will
not be competitive. Better architectures by RA usage, rather
than technology progress, will be the key to keep up the
current innovation speed beyond the limits of silicon. It is
time to revisit past decade R&D results to derive commercial
solutions: at least one promising approach is available. It’s time
to overcome the design crisis by switching to compilation
techniques. It is time for you to get involved. Theory and
backgrounds are ready for creation of a dichotomy of
computing science for curricular innovations urgently needed.

5� &���������
1. R. Hartenstein, H. Grünbacher (Editors): The Roadmap to Reconfigurable com-

puting - Proc. FPL2000, Aug. 27-30, 2000; LNCS, Springer-Verlag 2000
2. A. DeHon: Reconfigurable Architectures for General Purpose Comput-

ing; report no. AITR 1586, MIT AI Lab, 1996
3. R. Hartenstein: The Microprocessor is no more General Purpose

(invited paper), Proc. ISIS'97, Austin, Texas, USA, Oct. 8-10, 1997.
4. R. Hartenstein (embedded tutorial): A Decade of Research on Reconfigurable

Architectures - a Visionary Retrospective; DATE 2001, Munich, March 2001
5. A. Marshall et al.: A Reconfigurable Arithmetic Array for Multimedia

Applications; Proc. ACM/SIGDA FPGA‘99, Monterey, Feb. 21-23, 1999
6. D. Cherepacha and D. Lewis: A Datapath Oriented Architecture for

FPGAs; Proc. FPGA‘94, Monterey, CA, USA, February 1994.
7. R. Kress et al.: A Datapath Synthesis System for the Reconfigurable Data-

path Architecture; ASP-DAC'95, Chiba, Japan, Aug. 29 - Sept. 1, 1995
8. H. Reinig: A Scalable Architecture for Custom Computing; Ph.D. The-

sis, Univ. of Kaiserslautern, Germany, July 1999.
9. R. Hartenstein, A. Hirschbiel, M. Weber: MoM - a partly custom-design

architecture compared to standard hardware; IEEE CompEuro 1989

10. R. Hartenstein et al.: A Novel Paradigm of Parallel Computation and its Use
to Implement Simple High Performance Hardware; InfoJapan’90, 30th
Anniversary of the Computer Society of Japan, Tokyo, Japan, 1990.

11. R. Hartenstein et. al.: A Novel ASIC Design Approach Based on a New
Machine Paradigm; IEEE J.SSC, Volume 26, No. 7, July 1991.

12. R. Hartenstein, A. Hirschbiel, K. Schmidt, M. Weber: A Novel Paradigm of Parallel
Computation and its Use to Implement Simple High-Performance-HW; Future
Generation Computer Systems 7, 91/92, North Holland - invited reprint of [10]

13. U. Nageldinger et al.: KressArray Xplorer: A New CAD Environment
to Optimize Reconfigurable Datapath Array Architectures; ASP-DAC,
Yokohama, Japan, Jan. 25-28, 2000.

14. R. A. Bittner et al.: Colt: An Experiment in Wormhole Run-time Recon-
figuration; SPIE Photonics East `96, Boston, MA, USA, Nov. 1996.

15. D. Gajski et al.: A second opinion on dataflow machines; Computer, Feb ’82
16. K. Hwang: Advanced Computer Architecture; McGraw-Hill, 1993.
17. E. Mirsky, A. DeHon: MATRIX: A Reconfigurable Computing Archi-

tecture with Configurable Instruction Distribution and Deployable
Resources; Proc. IEEE FCCM‘96, Napa, CA, USA, April 17-19, 1996.

18. J. Hauser and J. Wawrzynek: Garp: A MIPS Processor with a Reconfig-
urable Coprocessor; Proc. IEEE FCCM‘97, Napa, April 16-18, 1997.

19. E. Waingold et al.: Baring it all to Software: RAW Machines; IEEE
Computer, September 1997, pp. 86-93.

20. T. Miyamori and K. Olukotun: REMARC: Reconfigurable Multimedia
Array Coprocessor; Proc. ACM/SIGDA FPGA‘98, Monterey, Feb. 1998.

21. J. Becker et al.: Architecture and Application of a Dynamically Recon-
figurable Hardware Array for Future Mobile Communication Systems;
Proc. FCCM’00, Napa, CA, USA, April 17-19, 2000.

22. X.Tang, et al.: A Compiler Directed Approach to Hiding Configuration
Loading Latency in Chameleon Reconfigurable Chips; in [1]

23. C. Ebeling et al.: „RaPiD: Reconfigurable Pipelined Datapath“, in [24]
24. M. Glesner, R. Hartenstein (Editors): Proc. FPL’96, Darmstadt, Ger-

many, Sept. 23-25, 1996, LNCS 1142, Springer Verlag 1996
25. S. C. Goldstein et al.: PipeRench: A Coprocessor for Streaming Multi-

media Acceleration; Proc. ISCA‘99, Atlanta, May 2-4, 1999
26. D. Chen and J. Rabaey: PADDI: Programmable arithmetic devices for

digital signal processing; VLSI Signal Processing IV, IEEE Press 1990.
27. D. C. Chen, J. M. Rabaey: A Reconfigurable Multiprocessor IC for

Rapid Prototyping of Algorithmic-Specific High-Speed DSP Data
Paths; IEEE J. Solid-State Circuits, Vol. 27, No. 12, Dec. 1992.

28. A. K. W. Yeung, J.M. Rabaey: A Reconfigurable Data-driven Multipro-
cessor Architecture for Rapid Prototyping of High Throughput DSP
Algorithms; Proc. HICSS-26, Kauai, Hawaii, Jan. 1993.

29. J. Rabaey: Reconfigurable Computing: The Solution to Low Power Pro-
grammable DSP; Proc. ICASSP’97 Munich, Germany, April 1997.

30. D. Lewis: Personal Communication, April 2000.C. Ebeling et al.: Place-
ment and Routing Tools for the Tryptich FPGA; IEEE Trans on VLSI
Systems 3, No. 4, December 1995.

31. A. DeHon: Personal Communication, February 2000.
32. C. Ebeling: Personal Communication, March 2000.
33. A. Marshall: Personal Communication; February 2000.
34. B. Hutchings, B. Nelson: Using General-Purpose Programming Lan-

guages for FPGA Design; Proc. DAC 2000, Los Angeles, June 2000
35. M. W. Hall et al.: Maximizing Multiprocessor Performance with the

SUIF Compiler; IEEE Computer, Dec. 1996
36. T. J. Callahan and J. Wawrzynek: Instruction-Level Parallelism for

Reconfigurable Computing; in [37] pp. 248-257.
37. R. Hartenstein, A. Keevallik (Editors): Proc. FPL’98, Tallinn, Estonia,

Aug. 31- Sept. 3, 1998, LNCS, Springer Verlag, 1998
38. J. Hauser: Personal Communication, March 2000.
39. R. Hartenstein (invited embedded tutorial): Coarse Grain Reconfigurable

Architectures; ASP-DAC’01, Yokohama, Japan, Jan 30 - Feb. 2, 2001
40. R. Barua et al.: Maps: A Compiler-Managed Memory System for RAW

Machines; Proc. ISCA‘99, Atlanta, USA, June, 1999.
41. W. Lee et al.: Space-Time Scheduling of Instruction-Level Parallelism

on a RAW Machine; Proc. ASPLOS‘98, San Jose, Oct. 4-7, 1998.
42. C. A. Moritz et al.: Hot Pages: Software Caching for RAW Micropro-

cessors; MIT, LCS-TM-599, Cambridge, MA, Aug. 1999.
43. U. Nageldinger: Design-Space Exploration for Coarse Grained Reconfig-

urable Architectures; Dissertation, Universitaet Kaiserslautern, June 2001
44. M. Budiu and S. C. Goldstein: Fast Compilation for Pipelined Reconfig-

urable Fabrics; Proc. FPGA‘99, Monterey, Feb. 1999, pp. 135-143.
45. D. Chen at al.: An Integrated System for Rapid Prototyping of High Per-

formance Data Paths; Proc. ASAP‘92, Los Alamitos, Aug. 4-7, 1992
46. P. H. Hilfinger: A High-Level Language and Silicon Compiler for Digital

Signal Processing; Proc. 1985 IEEE CICC., Portland, May 20-23, 1985.M.
Potkonjak, J. Rabaey: A Scheduling and Resource Allocation Algorithm for
Hierarchical Signal Flow Graphs; Proc. DAC‘89, Las Vegas, June 1989

47. J. Noguera, R. Badia: A HW/SW Partitioning Algorithm for Dynami-
cally Reconfigurable Architectures; Proc. DATE 2001

FRPSDQ\ DUFKLWHFWXUH EXVLQHVV�PRGHO PDUNHW

$GDSWLYH�6LOLFRQ QRW�GLVFORVHG VHOO�FRUHV HPEHGGHG�'63

&KDPHOHRQ�6\VWHPV ���ELW�DUUD\ VHOO�FKLSV QHWZRUNLQJ

0DOOHDEOH QRW�GLVFORVHG ERXJKW�E\�3&0�6LHUUD YRLFH�RYHU�,3

0RUSK,&V QRW�GLVFORVHG VHOO�VROXWLRQV FHOOXODU�ZLUHOHVV

3$&7 QRW�GLVFORVHG VHOO�FRUHV '63�	�QHWZRUNLQJ

6LOLFRQ�6SLFH QRW�GLVFORVHG ERXJKW�E\�%URDGFRP QHWZRUNLQJ

6\VWROL[ELW�VHULDO�V\VWROLF VHOO�FRUHV VLJQDO�FRQGLWLRQLQJ

7ULVFHQG SURJUDPPDEOH�6R& VHOO�FKLSV HPEHGGHG�V\VWHPV

Fig. 16: Start-ups offering embedded reconfigurable array solutions [94].

D:\WINNT\Profiles\hoffmann\Desktop\SBCCI01.fm
8

48. J. Noguera, R. Badia: Run-time HW/SW Codesign for Discrete Event
Systems using Dynamically Reconfigurable Architectures; Proc. ISSS
2000 (Int’l Symp. System Synthesis), Madrid, Spain, Sept. 20 - 22, 2000

49. N. Tredennick: Technology and Business: Forces Driving Microproces-
sor Evolution; Proc. IEEE 83, 12 (Dec. 1995)

50. T. Molketin: Analyse, Transformation und Verteilung arithmetischer
und logischer Ausdruecke; Diplomarbeit, Univ. Kaiserslautern, 1995

51. J. Becker: A Partitioning Compiler for Computers with Xputer-based
Accelerators; Ph. D. dissertation, Kaiserslautern University, 1997.

52. M. Weinhardt, W. Luk: Pipeline Vectorization for Reconfigurable Sys-
tems; Proc. IEEE FCCM, April 1999

53. M. Gokhale, J. Stone: NAPA C: Compiling for a hybrid RISC / FPGA
architecture; Proc. IEEE FCCM April 1998

54. K. Schmidt: A Program Partitioning, Restructuring, and Mapping
Method for Xputers; Ph.D. Thesis, University of Kaiserslautern 1994

55. J. Becker et al.: A General Approach in System Design Integrating Recon-
figurable Accelerators; Proc. IEEE ISIS’96; Austin, TX, Oct. 9-11, 1996

56. M. Herz, et al.: A Novel Sequencer Hardware for Application Specific
Computing; Proc. ASAP‘97, Zurich, Switzerland, July 14-16, 1997

57. A. Ast, J. Becker, R. Hartenstein, R. Kress, H. Reinig, K. Schmidt: Data-
procedural Languages for FPL-based Machines; in [58]

58. R. Hartenstein, M. Servit (Editors): Proc. FPL’94, Prague, Czech
Republic, Sept. 7-10, 1994, LNCS, Springer Verlag, 1994

59. D. Knapp & al.: The ADAM Design Planning Engine, IEEE Trans CAD, July 1991
60. J. Lopez et al.: Design Assistance for CAD Frameworks; Proc. EURO-

DAC’62, Hamburg, Germany, Sept. 7-10, 1992
61. L. Guerra et al.: A Methodology for Guided Behavioral Level Optimi-

zation; Proc. DAC’98, San Francisco, June 15-19, 1998
62. P.-A. Hsiung et al.: PSM: An Object-oriented Synthesis Approach to

Multiprocessor Design; IEEE Trans VLSI Systems 4/1, March 1999
63. M. Herz: High Performance Memory Communication Architectures for

Coarse-Grained Reconfigurable Computing Architectures; Ph. D. Dis-
sertation, Universitaet Kaiserslautern, January 2001

64. F. Cathoor et al.: Custom Memory Management Methodology; Kluwer, 1998
65. N. D. Zervas et al.: Data-Reuse Exploration for Low-Power Realization of Multime-

dia Applications on Embedded Cores; PATMOS’99, Kos Island, Greece, Oct 1999
66. D. Soudris et al.: Data-Reuse and Parallel Embedded Architectures for Low-Power

Rreal-Time Multimedia Applications; PATMOS’2000, see: [90]
67. J. Kin et al.: Power Efficient Media Processor Design Space Explora-

tion; Proc. DAC’99, New Orleans, June 21-25, 1999
68. S. Kougia et al.: Analytical Exploration of Power Efficient Data-Reuse Transforma-

tions on Multimedia Applications; ICASSP’2001, Salt Lake City, May 2001
69. S. Wuytak et al.: Formalized Methodology for Data Reuse Exploration for Low

Power Hierarchical Memory Mappings; IEEE Trans. on VLSI Systems, Dec. 1998
70. D. Kulkarni, M. Stumm: Loop and Data Transformations: A tutorial; CSRI-337,

Computer Systems Research Institute, University of Toronto, June 1993
71. V. Tiwari et al.: Power Analysis of Embedded Software: A First Step Towards Soft-

ware Power Minimization; IEEE Trans. on VLSI Systems, Dec. 1994
72. G. Sinevriotis et al.: Power Analysis of the ARM 7 Embedded Microprocessor;

PATMOS’99, Kos Island, Greece, Oct 1999
73. A. Vandecapelle et al.: Global Multimedia Design Exploration using

Accurate Memory organization Feedback; Proc. DAC 1999
74. T. Omnès et al: Dynamic Algorithms for Minimizing Memory Band-

width in High throughput Telecom and Multimedia; in: Techniques de
Parallelization Automatique, TSI, Éditions Hermès, 1999

75. S. Wuytack et al: Minimizing the required Memory Bandwidth in VLSI
System Realizations; IEEE Trans. VLSI Systems, Dec. 1999

76. R.W. Hartenstein, A.G. Hirschbiel, M. Weber: A Flexible Architecture for Image
Processing; Microprocessing and Microprogramming, vol 21, pp 65-72, 1987

77. R. Hartenstein, A. Hirschbiel, M. Weber: MOM - Map Oriented Machine; in: E.
Chiricozzi, A. D'Amico: Parallel Processing and Applications, North-Holland, 1988

78. R.W. Hartenstein, A.G. Hirschbiel, M.Weber: MoM - a partly custom-design archi-
tecture compared to standard hardware; Proc. Compeuro 89, IEEE Press 1989

79. R. Hartenstein, A. Hirschbiel, K. Schmidt, M. Weber: A Novel ASIC Design
Approach based on a New Machine Paradigm; Proc. ESSCIRC 9̀0, Grenoble, France

80. R. W. Hartenstein, M. Riedmuller, K. Schmitt, M. Weber: A Novel Asic Design
Approach Based on a New Machine Paradigm; IEEE J. SSC, July 1991

81. R. Hartenstein, A. Hirschbiel, M. Riedmüller, K. Schmidt, M.Weber: A High Per-
formance Machine Paradigm Based on Auto-Sequencing Data Memory; HICSS-
24, Hawaii Int. Conference on System Sciences, Koloa Hawaii, 1991

82. Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed
Signal Processing; Workshop on Design Methodologies for Microelectronics, Smo-
lenice Castle, Slovakia, September 1995

83. P. Paulin et al.: Algorithms for High-Level Synthesis; IEEE Design & Test, Dec’89
84. F. Cathoor et al: Interactive Co-design of High Throughput Embedded

Multimedia; DAC 2000
85. L. Nachtergaele et al.: Optimization of Memory Organization and Parti-

tioning for Decreased Size and Power in Video and Image Processing
Systems; Proc. IEEE Workshop on Memory Technology, Aug 1995

86. F. Cathoor et al.: Custom Memory Management Methodology - Exploration of
Memory Organization f. Embedded Multimedia Systems; Kluwer 1998

87. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, K. Yelick: A Case for Intelligent RAM; IEEE Micro, Mar. / Apr. 1997.

88. R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger: Generation of Design
Suggestions for Coarse-Grain Reconfigurable Architectures; in [1]

89. V. Moshnyaga, H. Yasuura: A Data-Path Modules Design from Algorithmic
Representations; IFIP WG 10.5 Worksh. on Synthesis, Generation and Porta-
bility of Library Blocks for ASIC Design, Grenoble, France, Mar 1992

90. U. Nageldinger et al.: Design-Space Exploration of Low Power Coarse
Grained Reconfigurable Datapath Array Architectures; in [91]

91. D. Soudris, P. Pirsch, E. Barke (Editors): Proc. PATMOS 2000; Göttingen,
Germany Sept. 13 - 15, 2000; LNCS, Springer Verlag, 2000

92. L. Kruse et al.: Lower Bounds on the Power Consumption in Scheduled
Data Flow Graphs with Resource Constraints; Proc. DATE, Mrch 2000.

93. R. Hartenstein (invited paper): High-Performance Computing: über Szenen
und Krisen; GI/ITG Workshop on Custom Computing, Dagstuhl, June 1996

94. T. Kean (invited keynote): It‘s FPL, Jim - but not as we know it! Market Opportuni-
ties for the new Commercial Architectures; in [1]

95. R. Hartenstein (invited keynote): Reconfigurable Computing: a New Business
Model - and its Impact on SoC Design; DSD'2001 Warzaw, Poland, Sept 4 - 6, 2001

96. T. Makimoto: The Rising Wave of Field-Programmability; in: [1]

