
Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

NOVEL SEQUENCER HARDWARE FOR HIGH-SPEED

SIGNAL PROCESSING

Reiner W. Hartenstein, Helmut Reinig

Dept. of Computer Science, University of Kaiserslautern
P.O.Box 3049, 67653 Kaiserslautern, Germany

e-mail: abakus@informatik.uni-kl.de, FAX: ++49 631 205 2640

Abstract. The paper presents a novel kind of sequencer hardware, called data sequencer. For many signal

processing, multimedia, and other high-performance applications the new sequencer drastically reduces proc-

essor-to-memory bandwidth requirements, compared to conventional instruction sequencers. The data

sequencer coordinates the parallel operation of multiple address generators, each providing independent

access to structured data completely under hardware control. The paper describes principles and the hardware

design of the data sequencer and draws comparisons to related speed-up approaches.

Keywords: data sequencing, high-performance, address generator, structured data access

1 INTRODUCTION

Many applications in signal and image processing require fast access to structured data.
Most of the time, the data structures are arrays, either of simple scalar values or arrays of
records. In many algorithms (e.g. FFT, or FIR filtering), the access sequence to the data is
already known at compile time, because the index computations to the array elements are
done by nested loops, which do not depend on the actual data values. This is the reason, why
most digital signal processors [3, 4, 6] contain independent address generating ALUs. They
are used to compute the addresses of data for future use in parallel to the data manipulations
on already fetched data. Typically, these address generators are capable to produce a linear
address sequence with constant offsets between subsequent addresses, cyclic or modulo
addressing for cyclic buffers, and bit-reversed addressing for FFT-type applications. Harris
Semiconductor offers a similar address sequencer as a stand-alone device in a single pack-
age [5]. In addition to linear address sequences, it is capable to access data in two-dimen-
sional arrays from a single set of parameters. All of the address generators described above
are capable to provide addresses for scalar values only. The frequent cases, where an algo-
rithm requires access to structured data (e.g. a subarray moving as a sliding window across
the whole data array in two-dimensional FIR filtering) require a new setup of the address
sequence parameters quite often. This is because these address generators cannot make use
of the hierarchy information, where a simple data access sequence (the accesses to the subar-
ray or record elements) is repeated in a regular manner to access a large amount of structured
data. This is the motivation to develop an address generating device to support structured
data access for multi-dimensional arrays. The key issues are: support for structured data
access, data organization in one-, two-, or three-dimensional arrays, coordinated operation
of multiple address generators, and versatility of the possible address patterns to reduce the
reconfiguration overhead. We call this device Generic Address Generator, because it is used
to produce generic address sequences (known at compile-time) ahead of the data manipula-
tions without consuming instruction or memory bandwidth apart from a few parameter



Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

transfers. Multiple Generic Address Generators combine to a Data Sequencer, which con-
trols data manipulations by the sequence in which data arrives at the data processing hard-
ware.

The following section introduces the Generic Address Generator hardware. An application
example demonstrates its use in a high-speed image analysis environment for automotive
applications. A final section provides some technical information on the device and con-
cludes the paper.

2 THE GENERIC ADDRESS GENERATOR

The Generic Address Generator is a single device, which computes a sequence of addresses
from a set of parameters. The parameters can be downloaded via a simple processor bus
interface. During operation, a Generic Address Generator produces memory addresses only -
the data manipulations have to be performed by other devices, which operate on the data
according to the order in which the data elements arrive. Since the Generic Address Genera-
tors do not produce opcodes or addresses for the data manipulating devices, these can be
chosen from a wide variety of alternatives. They may either be general purpose microproces-
sors interfaced to the Generic Address Generator(s) by queues, or a reconfigurable computa-
tional hardware, or application specific computational devices designed for high throughput
applications.

The Generic Address Generator provides a logical view to the memory as a two-dimensional
map. Higher dimensional data arrays can be mapped by slicing them into planes, which can
be placed adjacently onto the two-dimensional memory organization. Large linear arrays
(vectors) are constructed by concatenating multiple rows in the address computations. Phys-
ically, a linear memory is accessed, of course, for compatibility with conventional memory
organizations. The Generic Address Generator can be programmed to several variations how
to combine two address parts to a single linear memory address. To support efficient access
to structured data, a Generic Address Generator operates in a two-stage pipeline. The first
stage computes handle positions for so-called scan windows, which represent a neighbour-
hood of data elements around the handle position (Handle Position Generator). A handle
position consists of two 16-bit values for the two dimensions of the data memory. The
sequence of handle positions describes how the corresponding scan window moves across
the data memory (figure 1). Such a sequence of handle positions is called scan pattern.

The second pipeline stage computes a sequence of offsets to the handle positions, to obtain
the effective memory addresses for the computations. Therefore this stage is called Memory

Figure 1: Block diagram of the Generic Address Generator

Generic Address Generator

Handle Position Generator

Memory Address Generator

Control
Logic handle position sequence

memory address sequence

= handle position read 1,1

read -1,0

read 0,1

write 0,0

write 0,1

0,1:
r/w

1,1:
r

0,0:
w

-1,0:
r

= no access



Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

Address Generator. The offsets may be programmed to appear in arbitrary order, because the
memory addresses are computed from simple RISC-like instructions (figure 1). With a
proper instruction pipelining, addresses can be delivered one in each clock cycle, so that the
introduction of instruction sequencing at this level does not introduce a bottleneck.

Multiple Generic Address Generators may be run in parallel on a single memory bus or mul-
tiple memory buses. They synchronize their scan patterns through the activations of the data
processing device(s). All scan patterns proceed until either they detect an explicit synchroni-
zation point in the offset sequence of the Memory Address Generator, or they are blocked by
a write operation to memory, waiting for the data processing device(s) to compute the
desired result. In case of a single memory bus, explicit synchronization instructions in the
Memory Address Generator program are mandatory to allow bus mastership to change from
one Generic Address Generator to the next.

The following sections describe the pipeline stages of the Generic Address Generator in
more detail. Afterwards, the capabilities of a Generic Address Generator are illustrated by
examining the set of scan patterns that a Generic Address Generator can produce without
requiring a reconfiguration.

2.1 The Handle Position Generator

The control structures of an algorithm are mapped onto the scan patterns produced by the
Handle Position Generator. Therefore, a Handle Position Generator should be as versatile as
possible, so that many kinds of nested loops can be transformed to single parameter sets for
long periods of hardware controlled address generation. A Handle Position Generator can
produce a scan pattern corresponding to four nested loops at the most. It is programmed by
specifying a set of parameters, such like starting position, increment value, and end position
of a loop, each both for the x and y dimension of the data memory. A closer look to the hard-
ware organization makes clear, how this can be achieved.

The programming model of the memory is a two-dimensional map. Therefore the Handle
Position Generator consists of two identical parts, one for each dimension (figure 2). This
allows to use both dimensions at will, since the hardware structure induces no preference to
assign specific characteristics only to one dimension. The so-called 1–D Address Generators
operate in parallel and synchronize through a trigger logic, which preserves the symmetry of
the design. The programmer decides, which (if any) 1-D Address Generator operates as mas-
ter, triggering the other 1-D Address Generator to perform a step at the appropriate posi-
tions. The trigger logic simply routes the trigger signals according to the programmer’s
specification. Furthermore, it evaluates all conditions, which require a knowledge of the
state of the complete system (e.g. when a scan pattern terminates).

Figure 2: Block diagram of the Handle Position Generator

1-D Address

Generator

1-D Address

Generator

Trigger

Logic

Segment

Check

Segment

Check

Handle Position Generator Data Dependent Control

Status Status

StatusStatus

Trigger Trigger

X-Position Y-Position



Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

The one-dimensional positions produced by each of the 1-D Address Generators are checked
against segment limits, before they are presented to the Memory Address Generator as valid
handle positions. This serves as a kind of memory protection scheme, which is especially
useful, if the handle positions are computed under control of the data manipulating devices,
dependent on the data processing results. The segment check units make sure, that all handle
positions of a Generic Address Generator remain within a programmer-defined orthogonal
bounding box in the two-dimensional memory map. By providing the maximum and mini-
mum offsets that occur in the Memory Address Generator program, the segment checks can
even evaluate whether the bounding-box would be left during the generation of memory
addresses and invalidate such a handle position before it is passed on in the pipeline.The
actual address computations are done by the 1-D Address Generators. Each 1-D Address
Generator is capable of handling two nested loops, where the number of iterations is known
at compile time.

2.2 The Memory Address Generator

The Memory Address Generator resembles a kind of RISC processor with a special purpose
instruction set and on-chip instruction memory. The only task that has to be performed by
the Memory Address Generator, is to provide an arbitrary sequence of offsets to be added to
the handle position to perform memory accesses in a local neighbourhood around the scan
window handle position. The most efficient way to support arbitrary offset sequences, is to
make the offsets directly programmable in a memory that is scanned linearly. At every new
handle position, the memory is scanned again from the beginning. But since the length of the
offset sequence varies from application to application, an escape mechanism has to be pro-
grammed into the offset memory, to signal the end of an offset sequence. Interpreting the
offsets as read or write instructions and the escape code as branch to the beginning, the
Memory Address Generator can be programmed with a small and simple instruction set.
Additional instruction codes have to be introduced to support pipelining in the data process-
ing devices with the requirement of conditionally executed read or write operations at the
beginning and at the end of loops, to fill the pipeline, and to flush results remaining in the
pipeline.

Figure 3: Block diagram of the Memory Address Generator

Memory Address Generator

Handle.y Handle.x stack.y stack.x

+ +

linear address
combination

+

base address

bus interface

effective memory address

offsets

AIRport

Address
Instruction

RAM (AIR)

AIRptr

memwidth

FSM

lastvalidhandle position



Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

The range of offsets may be –32 to +31 in both dimensions of the data memory. The memory
to store the instructions (address instruction RAM, AIR) has 256 entries, so that at most
about 250 references to the data memory can be made from a single handle position. At least
three instructions are overhead, which have to be inserted to accept a new handle position
from the Handle Position Generator, to signal the start of computations to the data process-
ing devices, and to jump to the beginning at the end of an offset sequence.

After the instructions have been fetched and decoded, the offsets have to be added to the cur-
rent handle position. A number of steps are performed with each of the resulting addresses,
to transform them into physical memory addresses. These tasks are completely hardwired,
because they have to be applied to each address. The first is an address modification to allow
for cyclic addressing. For each dimension, a CycleMask word is used to keep selected bits of
the address from changing, and a CyclePattern word provides default values for the masked
bits. If the CycleMask is partitioned into a leading block of 16–k zeroes and a trailing block

of k ones, for example, the resulting addresses automatically wrap around at the 2k bound-
ary, because the values of the higher (16 – k) bits are masked. Input to the following step are
still two 16-bit address words, one for each dimension. To be able to access a conventional
linear memory, the address parts have to be combined to a linear memory address. The
address parts of the two dimensions may be combined to a real linear memory address in
four ways: one row of two-dimensional memory (x dimension) may consume an address
space of 10, 12, 14, or 16 bits. This allows to adjust the “size” of the data memory to the size
of the processed data, to reduce wastage of address space. After the concatenation of the two
address parts to a linear address, a 32-bit base address is added, to obtain the effective mem-
ory address. The base address typically is the starting address of the data array referenced by
this Generic Address Generator. Finally, the bus interface handles the protocol for the actual
data transfers between the data memory and the data manipulating devices, using the effec-
tive memory address to access the data memory. A block diagram (figure 3) illustrates these
tasks, as they are performed in the Memory Address Generator. The AIRport register has
been introduced for two reasons. First, the instructions in the Address Instruction RAM
(AIR) are only 16 bits wide, so that the AIRport register serves as an interface register, to
transfer two instructions with one configuration data transfer. Second, to the processor
which downloads the parameters, the Address Instruction RAM is hidden behind the AIR-
port register and consumes only a single address. The programming model corresponds to a
shift register, allowing to write a complete instruction stream to the same AIRport address
during configuration. This can be done efficiently using block transfers. This concept
improves the scalability of the Generic Address Generator, because different sizes of the
Address Instruction RAM do not require a different layout of configuration register
addresses, but only a different length of the block transfers. This is true for the number of
instructions that can be stored as well as for the format of the instructions (32-bit instruc-
tions would allow for a larger offset range, for example). The resulting changes to the down-
load software can easily be parameterized, whereas the processor interface remains
unchanged for all these variations of Memory Address Generators.

A chip photograph of the Generic Address Generator can be seen in figure 4. It has been fab-
ricated in a 1.0 m CMOS standard cell process at European Silicon Structures (ES2). The
circuit contains 6821 standard cells, being equivalent to 126702 transistors, excluding the
RAM. The macro-block in the upper left corner is the 256 word Address Instruction RAM.

The die size is 8.3 by 7.4 mm2, including the pads. It is housed in a 101 pin PGA package
and operates at 20 MHz. Spending additional efforts in the place and route process and
inserting some more stages to the pipeline, higher operation frequencies will be possible.



Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

2.3 Scan Patterns

The Generic Address Generator is capable to compute a wide variety of scan patterns from a
single parameter set, without requiring further interaction with a host processor. To give an
impression of the Generic Address Generator’s capabilities, an incomplete choice of exam-
ples has been collected in figure 5. It is important to notice, that these scan patterns describe
the sequence of handle positions only. At each position, a large number of nearby data ele-
ments can be accessed in arbitrary order.

MAG
RAM

bus
interface

M
em

o
ry

A
d

d
re

ss
G

en
er

at
o

r

Handle
Position

Generator

pads

chip organization

Figure 4: Generic Address Generator chip photograph

a) b)

c)

d) e) f) g)

Figure 5: Scan pattern repertory: a) single steps; b) linear scans; c) video-scan variations;
d) zig-zag scan; e) spiral; f) and g) data dependent scans



Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

For all scan patterns, the stepwidths can be chosen arbitrarily in the range of 1 to 65536.
They have been reduced to one for the more complex patterns only for compactness of the
presentation. And since both dimensions are completely symmetric, all variations of the scan
patterns, where x and y dimension are interchanged, are valid scan patterns as well. Even the
interleaved video-scan in figure 5c, where the odd x positions are visited first and the even
ones next before proceeding with the next line can be changed e.g. to a pattern, where first
the odd and then the even lines are processed, like an interlaced video display does. The data
dependent scan patterns in figure 5f and g can be handled with little overhead, because the
data manipulating devices only have to signal the sign bits of the single step vectors, using
the programmed stepwidths of the Generic Address Generator. This simplifies curve follow-
ing and Lee routing applications as examples of algorithms requiring nearest neighbour data
dependent processing. Furthermore, the arbitrary sequence of addresses programmable in
the Memory Address Generator allows to produce any scan pattern made up of up to 250 ref-
erences to addresses in a 64 by 64 words wide area. This includes all scan patterns required
for the JPEG compression algorithm, which operates on blocks of 64 data words in an eight
by eight array organization.

3 APPLICATION EXAMPLE

The availability of high-dynamic-range CMOS image sensors (HDRC) with random access
to the pixel array serves as a prerequisite to automotive applications like automatic collision
prevention [1]. A sensor with a high dynamic range is necessary to avoid the saturation
known from CCD cameras in the case when a car leaves a tunnel, where the sensors have to
be able to detect an approaching car against the bright sunlight. The real time analysis of the
incoming data can be done more efficiently, if a random access to the sensor array allows to
concentrate on the interesting portions of the image, which greatly reduces the data transfer
rates required between the sensor and the image processing hardware. The design of a hard-
ware to perform such a collision detection can be seen in figure 6.

The first Generic Address Generator computes the address sequence for the image preproc-
essing hardware, which performs an edge detection (e.g. by applying a two-dimensional FIR
filter with appropriate weights). The pixels are read directly from the sensor array in the
order which is important to the selected algorithm. The second Generic Address Generator
reads the resulting edge enhanced image from the preprocessing hardware and stores it into
a dual-ported data memory. There a general-purpose CPU or a digital signal processor may
perform the image analysis tasks, where the edges have to be combined to objects. These are
identified to detect obstacles, like the approaching car, and the borders of the street, for
example. Since these algorithms do not reveal address patterns known at compile time, they
can be handled with less overhead by a von Neumann style processor than by an address
generator.

Figure 6: Automotive collision detection using two Generic Address Generators

HDRC Edge Detection
Hardware

Dual-ported
Data Memory

Generic
Address Genera-

Generic
Address Genera-

CPU: Image
Analysis

data data data

addr
addr

sync

addr

sync



Reiner W. Hartenstein, Helmut Reinig: Novel Sequencer Hardware for High-Speed Signal Processing; Workshop on Design Methodologies for Microelectronics,
Smolenice Castle, Slovakia, September 1995

Notice: This document has been provided by the contributing authors as a means to ensure timely dissemination of scholarity
and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copy-
right holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted with-
out the explicit permission of the copyright holder.Xputer Lab

The hardware for the image preprocessing might be a reconfigurable hardware like the rDPA
[2], or the reconfigurable data-driven multiprocessor architecture proposed in [7]. Both
would be superior over special purpose hardware with regard to flexibility in the choice of
algorithms to be run. The required data rates of 3.2 MBytes per second to process the con-
tents of the complete sensor array of 128 by 256 pixels 100 times a second can easily be han-
dled by both kinds of devices. This allows to process even larger sensor arrays built from
multiple devices, or higher frame processing rates than 100 per second.

Using two independent Generic Address Generator allows to perform the image analysis in a
pipelined fashion, where the image acquisition, the image preprocessing, and the image
analysis are done in parallel in different stages of the pipeline. This does not even increase
the latency from the image acquisition to the collision detection, because all these steps
would have to be done sequentially as well in a non-pipelined fashion, only at lower overall
data rates or higher bandwidth requirements. The versatility of the scan patterns in combina-
tion with the two-level hierarchy of address generation allows to run a wide variety of image
preprocessing algorithms in an endless loop without requiring any download of parameters
after the initial power-up configuration.

4 CONCLUSIONS

The Generic Address Generator developed at Kaiserslautern University is superior to the
address generation units found in digital signal processors as well as other separately availa-
ble address generation devices on the market. It provides the support to run complete image
and signal processing algorithms on structured data without requiring an update of parame-
ters after an initial configuration at power-up time. Multiple Generic Address Generators can
operate as a Data Sequencer in a system, either on shared memory buses or on separate
buses, and automatically synchronizing for the highest collision-free data transfer rates. The
simple interface to reconfigurable computing devices makes the Generic Address Generator
an ideal candidate to build application specific signal processing hardware from off-the-shelf
components.

The Generic Address Generator has been successfully designed and fabricated in a student
project. The 1.0 m CMOS standard cell process allows an operation at 20 MHz. The circuit
fabrication and the design software have been made available by the Eurochip project of the
CEC.

References

[1] GRAF, H.G. – HÖFFLINGER, B. – SEGER, U. – SIGGELKOW, A.: Elektronisch sehen. Elektronik,
Vol. 3/95, Franzis-Verlag 1995, pp. 52 - 57.

[2] HARTENSTEIN, R.W. – KRESS, R. – REINIG, H.: A Reconfigurable Data-Driven ALU for Xputers.
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines (FCCM'94), Napa,
CA, April 1994.

[3] N.N.: ADSP-21020 User’s Manual. Analog Devices 1991.

[4] N.N.: DSP96002 IEEE Floating-Point Dual-Port Processor User’s Manual. Motorola 1989.

[5] N.N.: Harris Semiconductor Data Book. Harris Corporation 1992, pp. 6-3 - 6-15.

[6] N.N.: TMS320C3x User’s Guide. Texas Instruments 1990.

[7] YEUNG, A.K.W. – RABAEY, J.M.: A Reconfigurable Data-Driven Multiprocessor Architecture for
Rapid Prototyping of High Throughput DSP Algorithms. Proceedings 26th Hawaii Int’l. Conf. on Sys-
tem Sciences, Vol. 1, IEEE Computer Society Press 1993, pp. 169 - 178.


