

EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing





EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing





EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing





EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing





EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing

| Immediate                                                                                                                                                                            | e and Accumulator Addressing                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <ul> <li>The instruction syntax contains the specific value of the operand <ul> <li>LD #80h, A</li> </ul> </li> <li>Immediate values can be 3,5,8,9, or 16 bits in length</li> </ul> |                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Figure 5–1. RPT Instruction With Short-Immediate Addressing                                                                                                                          |                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 1 instruction word                                                                                                                                                                   | 15         14         13         12         11         10         9         8         7         6         5         4         3         2         1         0           1         1         1         0         1         1         0         0         8-bit constant |  |  |  |  |  |  |
| Figure 5–2. RPT Instruction With 16-Bit-Immediate Addressing                                                                                                                         |                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                      | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 2 instruction words                                                                                                                                                                  | 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                      | 16-bit constant                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| <ul> <li>Accumulator<br/>address         <ul> <li>READA Sm</li> </ul> </li> </ul>                                                                                                    | r addressingUses the accumulator as an                                                                                                                                                                                                                                 |  |  |  |  |  |  |

EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing





EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing

| Indirect addressing (cont'd) |                   |                                     |                                                                                                                   |   |  |  |
|------------------------------|-------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|---|--|--|
| MOD<br>Field                 | Operand<br>Syntax | Function                            | Description <sup>†</sup>                                                                                          |   |  |  |
| 0000 (0)                     | *ARx              | addr = ARx                          | ARx contains the data-memory address.                                                                             |   |  |  |
| 0001(1)                      | *ARx-             | addr = ARx<br>ARx = ARx – 1         | After access, the address in ARx is decremented.‡                                                                 |   |  |  |
| 0010 (2)                     | *ARx+             | addr = ARx<br>ARx = ARx + 1         | After access, the address in ARx is incremented.‡                                                                 |   |  |  |
| 0011 (3)                     | *+ARx             | addr = ARx + 1<br>ARx = ARx + 1     | Before its use, the address in ARx is incremented; this new address is used to address the data-memory operand.1# |   |  |  |
| 0100 (4)                     | *ARx-0B           | addr = ARx<br>ARx = B(ARx – AR0)    | After access, AR0 is subtracted from ARx with reverse<br>carry (rc) propagation.                                  |   |  |  |
| 0101 (5)                     | *ARx-0            | addr = ARx<br>ARx = ARx – AR0       | After access, AR0 is subtracted from ARx.                                                                         |   |  |  |
| 0110 (6)                     | *ARx+0            | addr = ARx<br>ARx = ARx + AR0       | After access, AR0 is added to ARx.                                                                                |   |  |  |
| 0111 (7)                     | *ARx+0B           | addr = ARx<br>ARx = B(ARx + AR0)    | After access, AR0 is added to ARx with reverse carry (rc)<br>propagation.                                         |   |  |  |
| 1000 (8)                     | *ARx-%            | addr = ARx<br>ARx = circ(ARx – 1)   | After access, the address in ARx is decremented using<br>circular addressing.‡                                    |   |  |  |
| 1001 (9)                     | *ARx-0%           | addr = ARx<br>ARx = circ(ARx – AR0) | After access, AR0 is subtracted from ARx using circular<br>addressing.                                            | 2 |  |  |

EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing



EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing





EE201A, Spring 2003, Yung-Szu Tu, Chun-Ching, UCLA - Memory Addressing